
.- =

Technical Report 401-, #
"AN ANALYSIS OF SOFTWARE DESIGN

METHODOLOGIES

H. Rudy Ramsey, Michael E. Atwood,
and Gary D. Campbell

Science Applications, Incorporated

HUMAN FACTORS TECHNICAL AREA

~2ý'

U. S. Army

Research Institute for the Behavioral and Social Sciences

August 1979

Approved for public release; distribution un!imited.

REPROOUCiD By
NATIONAL TECHNICAL
iNFORMATION SERVICE

U.S. DEPARITMEIT OF COMMERCE
SPRI•GFIELD, VA. 22161

............

II U. S. ARMY RESEARCH INSTITUTE
FOR THE BEHAVIORAL AND SOCIAL SCIENCES

4 A Field Operating Agency under the Jurisdiction of the
Deputy Chief of Staff for Personnel2 £

WILLIAM L. HAUSER
JOSEPH ZEIDNER Colonel, U S Army
'rechnical Director Commander

Research accomplished under contract
to the Department of the Army

Science Applications, Inc.

NOTICES

D;STRIBUTION- Primary distribution of this report has been made by ARI Please address correspondence
concerning distribution of reports to U S Army Research Institute for ihe Behavioral and Social Science%,
ATTN PERI.P, 5001 Eisenhovver Avenue, Alexanoria, Virginia 22333

FINAL DISP-OS[I=IO This report may be destroyed when it is no longer needed. Pleaeu do not return it to
the U. S. Army Research Institute for the Behavioral and Social Sciences,

tjQ"T The findings in this report aer not 10 be construed as an of ficial DAepatment of the Army position.
unless so diesignated by other authorized dlocumrents

"A" I Al

- �- � � 'a

I -�

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED
"a

FROM THE BEST COPY FURNISHED IJS BY

THE SPONSORING AGENCY. ALTHOUGH IT

IS RECOGNIZED THAT CERTAIN PORTIONS -

,1

ARE ILLEGIBLE, TT IS BEING RELEASED

IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

I

F
.> � a

a.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (Whm~n bete Entered)

REPORT DOCUMENTATION PAGE BFREA COSTPLCTINFON M
I. REPORT NUMBER 2. GOVT ACCESSIO4 NO. 2. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subitloo) 1.TgOFRQ00K8 CVED

k)~~N 3NALYS1S OF SOFTWARE DESIGN Tcnclet

7.AUTHOR-8) 3Ra

-H' ud Rmsy ica el 7A t Atood and
Gary D.CamF _ 8beC)2ll5'

9. PERFORMING ORGANIZATION NAME AND ADDRESS . PR5GRAM ELEMENT. PROJE. SK
Science Applications, Inc./ RA&WR NTNME,

7935 E. Prentice Avenue 2722A7
Englewood, CO 80111276

11. CONTROLLING OFFICE NAME AND ADDRESS
U.S. Army Research Institute for the Behavi I) ugIUMa

and Social Sciences (PERI-OS)It -3bLi ;'Zo
5001 Eisenhower Avenue, Alexandria, VA 22333 ill

14. MONITORING AGENCY NAME & AODRESS(if different from Controllingl Of. IS. SECURITY CLAbS zt.,w..

(-- nclassified

DECLASSI FICATIONDOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

18. SUPPLEMENTARYv NOTES

Monitored technically by Jean Nichols Hooper and Edgar M. Johnson, Human
Factors Technical Area, ARI.

1S. KEY WORDS (Con.inue on reverse, aide It necoeaery end Ideetify by block num~ber)

Human factors engineering
Computer programs
Computer programming
DocumentationI
Cognitive psychology

20. ABSTRACTr Coatinue sm everse dsis f: neceweary aid idtlfyW by block ijumoer)
--- ~ Four formal software design methodologiep were described and briefly

analyzed: (1) Structured Design, (2) JacksonS,0454-et~hodology, (3) Integrated
Software Development System (Higher Order Software), and (4) llarnie-l
TLogical Construction of rrograms.0 Relative strengths, weaknesses, arid
commonalities among the methods were identified and human factors problittI
areas were analyzed.

(Continued)

-~ U ~ 1473 EDIT11ON OF I NOV 6SS IS OBSOLETEI JAN 73Unclassified
i SECUP''" -r t D 0&rF ilo,.. Anuf

~*J~1 ''31 i{>w. w4

Unclassified
SECURITY CLASSIFICATION OF THIS PA09(hr.,. Data Entered)

Item 20 (Continued)

' 'Several major human factors deficiencies and problems were identified.
Formal software design methods differ in terms of: Applicability to
problems of different types, size or complexity; susceptibility to design
errors; and constraints and limitations imposed on the software designer.
Various methods limit the designer's ability to select an appropriate
problem representation, prevent the designer from utilizing relevant knowl-
edge and experience, or impose potentially significant information loads
on the designer. Improvements in dusign methodologies require a better

understanding of the problem-solvlng behavior of software designers; po-
tential reseýarch topics in this area were identified.

A p
II

- i --

"Unclassified
jj SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)'

Technical Report 401

AN ANALYSIS OF SOFTWARE DESIGN
METHODOLOGIES

H. Rudy Ramsey, Michael E. Atwood,
and Gary D. Campbell

Science Applications, Incorporated

Submitted by:
Edgar M. Johnson, Chief

HUMAN FACTORS TECHNICAL AREA

Approved by:

Milton S. Katz, Acting Director
ORGANIZATIONS AND SYSTEMS
RESEARCH LABORATORY

U.S. ARMY RESEARCH INSTITUTE FOR THE BEHAVIORAL AND SOCIAL ,": "
5001 Eisenhower Avenue, Alexandria, Virginia 22333

Office, Deputy Chief of Staff for Personnel
Department of the Army

August 1979

Army Project Number Human Factors In
20762725A778 Software Development

Approved for public release, distribution unlimited.

ill S

-~~~~~~ -- ----

.1 1. L~~

ARI Research Reports and Technical Reports are intended for sponsors of
R&D tx4 s and :or other research and military agencie3. Any findings ready
for implementation at the time of publication are presented in the last part
of the Brief. Upon completion of a major phase of the task, formal recom-
mendations for official action normally are conveyed to appropriate military
agencies by b-iefing or Disposition Form.

1

k,

-

z ' '.

FOREWORD

The :Human Factors Technical Area of the Army Research Institute

(ARI) is concerned with human resource demands of increasingly complex

battlefield systems used to acquire, transmit, process, disseminate,

and utilize information. This increased complexity places great de-

mands upon the operator interacting with the machine system. Research

in this area is focused on human performance problems related to inter-
actions within command and control centers as well as issues of system
development. It is concerned wi'th such areas as software development,

topographic Droducts and procedures, tactical symbology, user-oriented

systems, information management, staff operations and procedures, and

sensor sisterrs integration ard utilization.

One area of special interest involves the development of computer
software to support automated battlefiald sy3tems. Software develop-
ment is costly, unreliable, and not well understood. In this research,
software design methodologies we-e analyzed in terms of human problem-
solving behavior. The aralysis indicated that the design methods im-
posed varying constiaints and demands on the software developer and
that the methods differed in susceptibility to design errors. This
research is part of a larger effort to develop a conceptualization of
the programming process and identify behavioral bottlenecks in soft-
ware development. Efforts in this area are directed at improving ac-
curacy and productavity in programming through che design of procedures,
languages, and methods to enhance performance of software develop'tenr
tasks.

Research in the area of human factors in software development is
conducted as an in-house effort augmented contractually by organiza-
tions selected as having unique capabilities and facilities, in this
case Science Applications, Inc., under contract DAHCI9-78-C-0005. The
effort is responsive to requirements of Army Projects 2Q762725A778, and
to general requirements expressed by members ot the Integrated Software
Research and Development Working Group (ISRAD).

The authors are indebted to Martha Cichelli, Margaret Hamilton,
Henry Ledgard, John O'Hare, and Edwaid Yourdon for their helpful com-
ments on this report.

SEPH ZE R
ee hnical Director

21v

AN ANALYSIS OF SOFTWARE DESIGN METHODOLOGIES

BRIEF

Requirement:

To describe and analyze alternative formal software design
methodoloqies.

Procedure:

Four formal software design methodologies were described and
briefly analyzed: (1) Structured Design, (2) Jackson's Methodology,
(3) Integrated Software De-elopment System (Higher Order Software),
and (4) Warnier's "Logical Construction of Programs." Relative
strengths, weaknesses, and commonalities among the methods were iden-

tified and human factors problem areas analyzed.

Findings:

Several major humdn factors deficiencies and problemas were iden-
tified. Pormal software desig.i methods eiffer in terms of: applica-
bility to problems of different types, size or complexity; suscepti-
bility to design errors; and const:raints and limitations imposed on
the software designcr. Various methods limit the designer's ability
to select an appropriate problem representation, prevent the designer
from utilizing relevant knowledge and experience, or impose potentially
significant information loads oa the designer. Improvements in eesiqn
methodologies require a better understanding of the problem-solving
behavior of software designers; potential reseazch topics in this area
were identified.

Utilization of Findings:

This description and analysis of software design methodologies
will assL., software developers in selectioi. of an appropriate design
method consistent with the problem type, size, and complexity. This
analysis also provides useful information to the software designer on
the potential for design errors using different techniques, and ex-
plicitly identifies areas where design methods are imprecise and may
be difficult to implement. With additional information on the cogni-
tive performance of software designers, the identified weaknesses of1 •he design technicues reviewed may be improved.

Preceding page blankS~Vii

""7"

TABLE OF CONTENTS

Page

INTRODUCTION 1

THE DESIGN PROCESS. 8

DESIGN TASKS IN GENERAL8

SOFTWARE DESIGN11

INFORMAL SOFTWARE DESIGN TECHNIQUES. 16

BASIC APPROACHES.16

STEPWISE REFINEMENT.20

"INFORMATION HIDING"21

GOAL-DIRECTED PROGRAMMING22

DESIGN DOCUMENTATION TECHNIQUES.23

DESCRIPTIONS OF THE FORMAL DESIGN METHODOLOGIES.35

STRUCTURED DESIGN 37

Overview37

Detailed Discussion 38

Transform Analysis. 39

Transaction Analysis44

Evaluation Criteria 46

Structured Design Heuristics. 51
THE JACKSON METHODOLOGY. 53

Overview 53
Detailed Oiscussion 53

Structure Clashes. 55

Backtracking 55

Jackson's Procedures 56
THE "HIGHER ORDER SOFTWARE" APPROACH 58

Overview 59

HOS System Development Model. 60

Axioms and Decomposition~ Techniques.62

WARNIER'S "LOGICAL CONSTRUCTION Or' PROGRAMS"........65

Overview65

Detailed Description 65

ANALYSIS FROM A PROBLEM-SOLVING PERSPECTIVE. 76
PROBLEM'-REDUCTION APPROACHES. 77

ix Precedling page blank

TABLE OF CONTENTS (Continued)

P age
ALGORITHMIC APPROACHES 81

EFFECTS OF DESIGN TECHNIQUES ON PROBLEM REPRESENTATION 85

PREVENTION AND DETECTION OF DESIGN ERRORS 83

SUMMARY. 94

Structured Design 94

ISDS/HOS 96

Jacksor's Methodology. 97

Warnier's "Logical Construction of Programs" 97

CONCLUSIONS AND RECOMMENDATIONS 98

REFERENCES101

APPENDIX AA-1

LIST OF FIGURES

Figure 1. Some of the Tasks Involved in Software
Develo(pment 3

Figure 2. Example of a Simple Software Design Problem
(adapted from Levin, 1976). 4

Figure 3. Simplified Example of Software Design for the Problem
of Figure 2 5

Figure 4. Flowchart and Program Design Larguage Representativesof a Simple Sorting Algorithm (from Cain & Gordon,

1977) 24

Figure 5. Structure Charts with Added Control Fiow Information 26

Figure 6. Simple Example of a "Chapin Chart:, with Correspond-
ing PDL 27

Figure 7. HIPO Chart (from Stay, 1977) 29
Figure 8. Example of a graphical data structure description

(from Wasserman, 1977)
Figure 9. Use of Augmented Language Grammar and SL .porting

Primitives to Describe a Precompiler 32

Figure 10. Types of Design Information Conveyed by Various
Documentation Techniques 34

Figure 11. A Simple Flow Diagram (adapted from Myers, 1975) . . 39

Figure 12. Initial Structure Chart for System of Figure 11
(from Myers, 1975) 41

Figure 13. Complete Structure Chart and Data Flow Table for
Problem of Figure 3 (from My.e-rs, 1975) 42

Figure 14. A Data Flow Diagram Illustrating an "OR" Relationship
(from Yourdon and Constantine, 1975) 45

Figure 15. Hierarchical Structure of a Sample Output Data Struc-
ture (Step 1) (from Warnier, 1974) 67

Figure 16. Hierarchical Structure of a Sample Input Data Struc-
ture (Step 1) (from Warnier, 1974) 68

Figure 17. Hierarchical Structure of the Program (Step 2)
(from Warnier, 1974) 69

F~gu;'e 18. Skeleton Program Structure (Step 2) (from Warnier,
1974) 7o

Figure 19. List of Operations for Each Part of the Program
Skeleton (Step 3) (from Warnier, 1974) 72

Figure 20. Sorted List of Instructions (Step 4) (from Warnier,
1974) 74

xi

LIST OF FIGURES (Continued)

Figure 21. Summary of Problem-Reduction Methods 79

Figure 22. Calculating the Area- of a Parallelogram 86

Figure 23. A Somewhat Speculative Evaluative Summary of Formal
Design Methodologies 95

-- i,

xii

•~~- 41,4

INTRODUCTION

The production of computer software has become an area of

increasing interest and concern. Software production, as currently

practiced, is extremely costly and error prone. Boehm (1973) re-

ported that the percentage of total system development cost associated

with software is climbing rapidly, from less than 20% in the 1950's

to 70% in the 1970's and to a projected 90% of total system costs by

1985.

Clearly, there are many factors involved in the high cost and

other problems associated with today's software development process.

It seems probable, however, that the greatest potential for real im-

provement lies in concentrating on the software design process. Boehm

(1975) reports that, in several large system development efforts,

analysis and design accounted for 33-46% of the total effort expended.

He also estimates that each additional unit of time allocated to analysis

and design saves 1.5-3 units of time in later programming, debugging,

and integration stages (Boehm, 1974).

Design errors present a serious problem because they are frequent

and because they are very difficult and expensive to correct. In a

major study of Air Force automation requirements in the command and con-

trol area (Boehm and Haile, 1972),a review of many software projects in-

dicated that the majority of errors were design, not coding, errors.

Even more significantly, most design errors were not detected until the

system test phase. Of all errors, 54% were not found until after accept-

ance testing. Coding errors accounted for only 9%; the other 45% were

design errors.

In response to these problems, several formal techniques for

software design have recently been proposed. This paper provides a

review of these techniques and an analysis of the psychological issues

and properties underlying the techniques.

L .1~lei

Before proceeding, however, we will briefly consider what is

meant by the term "software design". Figure 1 presents brief de-

scriptions of software design and several other software development

tasks. For the purposes of this paper, the term software design is

used with a fairly precise meaning. It does not include deciding how

a system should behave from the viewpoint of the user. That activity

is called "systems analysis," and is not concerned with the intErnal

structure of the software. Many different software designs might be

derived, any of which would exhibit similar behavior from the user's

viewpoint. Software design is also not concerned with the detailed

procedural logic required to accomplish a particular computation. That

is algorithm or program design, or "programming".

Logically, software design occurs after system analysis and

before programming. Software design can be considered as "the process

of translating functional specifications into a structural description

of a system that will satisfy these specifications". There are, in

general, three characteristics of this structural description. First,

the description involves a "modular decomposition"; that is, the soft-

ware functions required by the specifications are decomposed into a

collection of units or program modules, each of which satisfies only

part of these specifications. Second, the design includes specification

of properties of the data flow among modules, which provides for ccm-

munication among program units. Third, a software design usually in-

cludes the definition of the data structures that are required to

satisfy the functional requirements, including information about data

types, organization into records and files, etc.

An example may clarify the distinction among these three types

of design information. A rather informal functional specification

that could be given to a designer for a small system is presented in

Figure 2. A possible design to meet these specifications is illustrated

in Figure 3. Each of the "boxes" in Figure 3a represents a module, and

the arcs connecting the modules serve to describe, at a very high level,

the control flow. An appropriate decomposition of the system into

kx' 2

Name Description

System Analysis Determination of the desired behavior
or of the system, without regard for under-

Functional Design lying hardware or software.

Determination of software system struc-
Software Design ture, including data structures and

program modules.

Detailed definition of the logical opera-
Programming tions, procedures, or algorithms involved

in a single program module.

Translation of detailed logical design
Coding of a program module into a programming

language.

Diagnosis and correction of the errors
Debugging in a program module.

After known errors in individual program

Integrated modules have been corrected, diagnosis

InTesting and correction of errors in groups of
modules together, and eventually thewhole system.

Figure 1. Some of the Tasks Involved in

Software Development.

3

a i

I4
•1, -- ,'

PAGE-KEYED INDEXING SYSTEM

BACKGROUND.
A book publisher requires a system to produce a page-keyed

index. This system will accept as input the source text of a book

and produce as output a list of specified index terms and the page
numbers on which each index term appears. This system is to operate
in a batch mode.

DESIGN TASK.
You are to design a system to produce a page-keyed index.

The source file for each book to be indexed is an ASCII file re-
siding on disk. Page numbers will be indicated on a line in the form
/*NNNN WHERE /* are marker characters used to identify the occurrence
of page numbers and NNNN is the page number.

The page number will appear after a block of text that com-
prises the body of the page. Normally, a page contains enough informa-
tion to fill an 8 1/2 x 11-inch page. Words are delimited by the fol-
lowing characters: space, period, comma, semi-colon, colon, carriage-
return, question mark, quote, double quote, exclamation point, and line-
feed. Words at the end of a line may be hyphenated and continued on
the following line but words will not be continued across page boundaries.

A term file, containing a list of terms to be indexed, will be
read from a card reader. The term file contains one term per line,
where a term is 1 to 5 words long.

The system should read the source files and term files arid find
all occurrences of each term to be indexed. The output should contain
the index terms listed alphabetically with the page numbers following
each term in numerical order.

A null source fill indicates that processing is completed. Error
messages and a termination message should be written to thie operator's
console. Each completed index is to be stored on disk for later listing.

Figure 2. Example of a Simple Software Design Problem
(adapted from Levin, 1976).

INV-

4

AO !

(a) Modular Structural

INITIALIZE

(b Data Flow

In Out

2. ---- Index terms

3.- - - - Page of text

4. Index terms, page of text Index entries

5. Index terms, index entries - - - -

(c) Data Structure

Inout Data Structures Cutout Data Structure

01 Test file 01 Index
02 Page (multiple .natances) 02 :ndex grouo '(multiple instances)

03 Line of text (multiple instances) 03 Index term
03 Page numoer 03 Index entry (multiple instances)

02 End of file 02 End of file
01 Index term file

02 Index term (multiple instances)
02 End of file

AFigure 3. Simplified Example of Software Design for the Problem of
Figure 2.

"'hIS PAGE, IS BrST QUALITy frjtU

5

S..... J •i|

program modules not only results in a log•lly simple and compre-

hensible design, but serves as a basis for the allocation of separ-

ate pa,,s of the implementation effort to different programmers.

Actually the MODULAR STRUCTURE of Figure 3a is at a rather high

level, and a more detailed design would ordinarily be specified,

even though this system is small enough to be implemented by a

single programmer.

Notice that the lines connecting modules in Figure 3a are

numbered. These numbers correspond to the DATA FLOW specification

of Figure 3b, which illustrates the flow of data among modules. For

example, when the main ("Indexer") module calls the "Process Page"

module, the main module makes the index terms and a page of text

available to the "Process Page" module. "Process Page" performs its

function, and may return index entries to the main module. This pas-

sage of data, or data flow, is shown in line 4 of Figure 3b.

Finally, Figure 3c illustrates a DATA STRUCTURE specification

for this problem. It shows, for example, that an input Text File

consists of any number of text pages, each with multiple text lines

and a single page number.

Not eve• software design involves all three •pes of specifi-

cation shown in Figure 3, nor does eve• software design method address

all of these. They are all included here to illustrate three basic

classes of information which solare designs may contain. A fourth

class of design information, control flow, is illustrated only loosely

in Figure 3, but will be discussed in a later section, on design docu-

mentation techniques.

This review is intended to provide both descriptive and critical

ihfomation about a representative set of formal software design meth-

• i odologies In particular the survey reported here had 5 goals:• :.- [• ,i

1

- I I•- -

1. Enumerate the relative strengths and weaknesses
of each considered technique.

2. Identify commonalities and differences.

3. Critically analyze human factors problem areas.

4. Make specific recommendations for improvements
in design techniques.

5. Formulate hypotheses for the empirical analysis
of software techniques.

The remainder of this report is divided into five sections.

Section 2 discusses the software design process from a theo-

retical perspective, and provides the framework for subsequent dis-

cussion of formal design methodologies. Section 3 reviews a variety

of informal design techniques which preceded the development of these

formal methodologies. Section 4 discusses design documentation tech-

niques, and clarifies further the variety of information which may

appear in a finished software design.

Section 5 presents a description of the formal design methodo-

logies which were surveyed in this study. These include:

Structured Design
Jackson's Methodology
Integrated Software Development

System (ISDS/HOS)
Warnier's "Logical Construction

or Programs"

Section 6 contains a brief analysis of formal design methodolo-

gies as problem-solving procedures and indicates potential areas for

future research on software design.

7

THE DESIGN PROCESS

"Design" has always been an integral part of software develop-
ment, but has only recently begun to receive attention. 0f all the

tasks involved in software development, design is perhaps the least

well understood. In general, the software design process does not

appear to be the type of algcrithmic or mechanical process that can
be easily and clearly described to others. As the Boehm and Haile

(1972) study implies,design also appears to be difficult, or at least
highly error-prone. Design is the one phase of software development

that produces the most errors, the most serious errors, and the longest-

lasting errors. This is clearly not the result of a simple process.

DESIGN TASKS IN GENERAL

Although our knowledge of software design behavior is limited,

design tasks in general have been studied. Design problems have been

categorized based on task requirements, and general problem-solving
methods have bEen analyzed. In this section, some work in these areas

will be reviewed, and then applied to the analysis of software design

tasks.

A very general definition of design is presented in Simon's

(1969, p. 59) discussions of the "sciences of the artificial" --
"design ... is concerned with how things ought to be, with devising

artifacts to attain goals". Simon is concerned with contrasting
"natural" and "artificial" sciences. Basically, a "natural" science

is "a body of knowledge about some class of things -- objects or
phenomena -- in the world; about the characteristics and properties

that they have; about how they behave and interact with each other"

(p. 1). An "artificial" science, in contrast, is one that is created

by man and dynamically altered or molded to fit man's current con-

ceptions of hi environment.

8

The distinction between solving natural and artificial problems

is q.iite clear. Natural sciences are concerned v,ith "how things are"

and the natural scientist knows (or presumably can discover) the laws.

phenomena, and other techniques for dealing with such problems. Arti-

ficial sciences, however, are concerned with "how things ought to be"

and the "laws" and techniques for dealing with; such problems are, like

the science, artificial.

The recognition that design is an artificial science lends

support to Bazjanac's (1975) criticism of computer aids for architec-

tural design. Bazjanac notes, quite correctly, that the promises of

computer-aided design are largely unfulfilled. He argues that "the

underlying causes of these promises are misconceptions about the design

process and how design is done. The most appalling of them is the

notion that one can extract formal models from the design process and

that the operation and utilization of such models can be separated

from other activities of design" (p. 25). This criticism is consistent

with the characterization, by Bazjanac and others, of design as a
"wicked" problem. One characteristic of a wicked problem is that de-

fining the criteria which must be met by an appropriate solution to the

problem is equivalent to solving the problem. It is clearly overly

pessimestic to conclude that design behavior cannot, in principle, be

understood. It is important to recognizer, though, that such under-

standing may be difficult to achieve.

Bazjanac's characterization of the design process is similar

to Simon's (1973) distinction between "ill-structured" and "well-

structured" problems. In order to be well-structured, a problem must,

among other criteria, have a clearly defined goal and a method for

"testing whether this goal is attained, have clearly defined components,

and provide a means for the problem solver to represent and use any

knowledqe that is considered appropriate. Simon argues quite strongly

(using architectural design as an example) that most, if not all,

problems are ill-structured and that "definiteness of problem structure

is largely an illusion that arises when we systematically confound the

1 9

_ _ ' 77eI 7T A

- ____----- V AM ~~

idealized problem that is presented to an idealized (and unlimitedly

powerful) problem solver with the actual problem that is to be attacked

by a problem solver with liraited (even if large) computational capa-

cities. If formal completeress and decidability are rare properties

in the world of formal systems, effective definability is equally

rare in the real world of large problems" (p. 186).

The point of view we will take in this review is to consider

software design as a type of problem-solving task. It is important

to determine, therefore, what type of problem software design is,

from a human problem-solving perspective. Previous research on human

problem solving suggests two dimensions for classifying problems--
..type" and "size." Type of problem is importart -since different types

of problems are, in general, best approached with different nroblem-

sulving techniques. Size is important, since the software designer

lids a finite amount of resources (human memory resources, processing

resources, etc.) and it is not uncommon that the demands imposed by

a given problem exceed those resources.

Greeno (1978) proposes a clarification consisting of three

types of problems. In "problems of inducing structure" (e.g., analogy

problems), the elements of the problem are given and the task is to

discover the pattern of relations among the elements. In "problems of

arrangement" (e.g., anagrams), the elements of the problem are given

and the task is to generate possible arrangements and search for an

,rrangement that meets some criterion. In "transformation problems"

(eog., towers of Hanoi), the initial situation, desired situation, and

a set of operators that transform one situation into another are given

and the task is to find some sequence of operations that transforms

the initial situation into the desired situation. Greeno's taxonomy,

though not very detailed, suggests that certain problem-solving tech-

niques apply to one class of problem but not necessarily to the others.

For example, means-ends analysis is a generally effective heuristic for

10

transformation problems, but is less effective (and perhaps even

inappropriate) for arrangement or structure problems.

Problem-solving methods can be viewed as processes which require

some input and return some output (cf. Newell, !973). The input to a

method is information about the task or problem to which it is to be

applied. In effect, a method requires that certain "givens" be pre-

sent in the statement of the problem. A method can, of course, require

relatively many or relatively few "givens". The outputs of a method
are the results it produces. A methoc can be guaranteea to deliver
useful results or can offer only a possibility of useful results.

In general, methods that require very specific inouts produce

very useful results; methods that require less specific inputs pro-

duce less useful results. These methods are called, respectively,
"strong methods", and "weak methods". An additional distinction is

useful; by virtue of requiring little information about a particular

application, a weak method is applicable to a larger numoer of tasks

or problems than is a strong method. For example, there are general

"troubleshooting" techniques which apply equally well to medical diag-

nosis, tracing the fault in an automotive electrical system, and soft-

ware debugging. Clearly, these are extremely weak, general methods.

They are broadly applicable, but they are seldom adequate to produce

a complete solution to a diagnostic problem without additional, more

specific techniques.

SOFTWARE DESIGN

Although the above discussion summarized work on the design

process, problem types, and methods, it is difficult to directly

apply this literature to software design problems. Software design

as a problem-solving task appears to involve aspects of all three

11Z •classes of problems proposed by Greeno; thus, many different tech-
riques may be required. In addition, software design problems are

frequentlj too large foil the designer -o conceptualize the entire

11M-

design at an appropriate level of detail. In effect, the design

problem initially demands more resources than the designer has.

Consider, for example, the design of two statistical programs,

one of which performs a simple t-test, while the other is a general-

purpose statistical package. The t-test program is the kind of problem

which is manageable in the designer's head, and little or no design

behavior is explicitly observable in tasks of this sort -- the designer

simply starts writing the program. It is not at all clear that any

formal cesign methods are requiredl, or would even be helpful, in this

situation. In the case of a complex statistical package, however,

the requirement for a separable design effort is clear, and it is

likely that formal design methods could be beneficial. Even this

problem is simple, when compared with many of the large systems being

built today.

It is when the desig'i problem is large or complex that the need

for formal design methods is most strongly felt. If the problem is

too big to be handled in the designer's head, st-vuctured procedures

are needed to help avoid errors and unnecessarily complex desigins.

In postulating a general set of guidelines for software design,

we are necessarily restricted to proposing weak methods. This is be-

cause of the wide differences which exist among software design prob-

lem types. For example, it is not at all clear that the methods useful

in designing a business report generator are all applicable to the

design of a programming language compiler, or vice-versa. It is, of

course, theoretically possible to postulate general guidelines employing

strong methods. Such approach would involve successively partitioning

the larger Gomain of software design into smaller and smaller subdo-

mains and identifying the strong methods appropriate for each sub-

domain. In effect, we would have a catalogue of procedures that are

sufficient to solve any design problem.

12

c ~.r

Our curr*ent understanding of software design, however, does

not allow us to form meaningful and useful partitions. By using

weak methods we cannot insure that our methods will always produce

useful results, but they can be applied to any software design

problem, not just a subset of such problems.

Within the past few years, several prescriptivw techniques

for software design have been proposed. The present report concerns

itself with a representative set of these techniques. Although dis-

cussions of these techniques emphasize different concepts and pro-

po,.e guidelines and procedures that appear to be fundamentally dif-

ferent, all of the techniques appear to share a common, very general

approach to software design. The principal technique employed by all

methodologies involves a "divide and conquer" strategy, more formally

referred to as "problem reduction".

Basically, a problem-reduction approach involves generating

and solving subproblems. The original problem is analyzed and de-

composed into a set cf smaller subproblems, whose solutions imply a

solution to the original problem. Each subproblem can similarly be

decomposed until subproblems are generated whose solutions are con-

sidered to be trivial.

A software design problem may be conceptually too large for

the designer to manage, at least in terms of the ultimate level of

detail that will be required. If the designer can cunceptualize the

problem on a more abstract level, however, the desiqner may be able

to decompose it into smaller, more manageable problems. Eventually,

subproblems will be produced which the designer considers to be
"irimitive". These primitive problems are generally solvable by

algorithmic means and it is at this point that the design is completed

and implementation begins.

13

There are obvicus advantages to using problem reduction and

it appears to be an appropriate approach to software design. We will

not enumerate the advantages here except to note that it is often

easier to solve two (or several) smaller problems than to attempt one

iarger problem. Problem reduction is, however, not without potential

disadvantages or difficulties.

First, successful problem reduction requires that the solutions

of the subproblems imply a solution to the larger problem from which

they were decomposed. Assume, for example, that the designer's initial

partition of the original problem is incorrect -- it omits a necessary

subgoal. Those subgoals that were identified will be expanded, and,

at some point, the design will be declared "finished". The resulting

design does not provide an adequate solution to the original design

problem, but this may go undetected until the implementation phase

or even later.

Second, successful use of problem reduction requires that the

subproblems be relatively independent. Clearly, the subproblems

(modules) of a design must be interrelated to some degree, but the

solution of one subproblem should not affect the solutions of other

subproblems. For example, if the design of one module causes changes

to be made to the design of another, those modules (subproblems) are

not independent. In general, modules which are independent can be

implemented independently.

Applying a problem-reduction approach requires ptoblem-reduction

operators and some type of evaluation function. Problem-reduction

operators are used to aid in resolving the first difficulty described,

assuring the correctness and sufficiency of the design. Evaluation

functions aid in resolving the second difficulty, achieving module

independence. A problem-reduction operator is a method for finding

some (hopefully) adequate decomposition of a problem. In general, more

than one decomposition is possible and evaluation functions are used to

determine whether the identified subproblems are independent.

14

Our current understanding of software design, however, does

not allow us to form meaningful and useful partitions. By using

weak methods we cannot insure that our methods will always produce

useful results, but they can be applied to any software design

problem, not just a subset of such problems.

Within the past few years, several prescriptive techniques

for software design have been proposed. The present report concerns

itself with a representative set of these techniques. Although dis-

cussions of these techniques emphasize different concepts and pro-

pose guidelines and procedures that appear to be fundamentally dif-

ferent, all of the techniques appear to share a common, very general

approach to software design. The principal technique employed by all

methodologies involves a "divide and conquer" strategy, more formally

referred to as "problem reduction".

Basically, a problem-reduction approach involves generating

and solving subproblems. The original problem is analyzed and de-

composed into a set of smaller subproblems, whose solutions imply a

solution to the original problem. Each subproblem can similarly be

decomposed until subproblems are generated whose solutions are con-

sidered to be trivial.

A software design problem may be conceptually too large for

the designer to manage, at least in terms of the ultimate level of

detail that will be required. If the designer can conceptualize the

problem on a more abstract level, however, the designer may be able

to decompose it into smaller, more manageable problems. Eventually,

subproblems will be produced which the designer considers to be
"primitive". These primitive problems are generally solvable by

algorithmic means and it is at this point that the design is completed

and implementation begins.

13

There are obvious advantages to using problem reduction and

it appears to be an appropriate approach to software design. We will

not enumerate the advantages here except to note that it is often

easier to solve two (or several) smaller problems than to attempt one

larger problem. Problem reduction is, however, not without potential

disadvantages or difficulties.

First, successful problem reduction requires that the solutions

of the subproblems imply a solution to the larger problem from which

they were decomposed. Assume, for example, that the designer's initial

partition of the original problem is incorrect -- it omits a necessary

subgoal. Those subgoals that were identified will be expanded, ard,

at some point, the design will be declared "finished". The resulting

design does not provide an adequate solution to the original design

problem, but tnis may go undetected until the implementation phase

or even later.

Second, successful use of problem reduction requires that the

subproblems be relatively independent. Clearly, the subproblems

(modules) of a design must be interrelated to some degree, but the

solution of one subproblem should not affect the solutions of other

subproblems. For example, if the design of one module causes changes

to be made to the design of another, those modules (subproblems) are

not independent. In general, modules which are independent can be

implemented independently.

Applying a problem-reduction approach requires problem-reduction

operators and some type of evaluation function. Problem-reduction

operators are used to aid in resolving the first difficulty described,

assuring the correctness and sufficiency of the design. Evaluation

functions aid in resolving the second difficulty, achieving module
independence. A problem-reduction operator is a method for finding

some (hopefully) adequate decomposition of a problem. In general, more

than one decomposition is possible and evaluation functions are used to

determine whether the identified subproblems are independent.

14 Nk

All of the software design methodologies to be considered in

the following sections involve, in one manner or another, problem-

reduction operators and evaluation functions. Although they differ

with respect to the particular operators and evaluation functions

employed, even those differences are smaller than the surface features

of the methodologies suggest. There are some important differences,

nonetheless, and it will be the purpose of the remainder of this report

to indicate some of the similarities and differences among these methods

from a human problem-solving point of view.

Given an awareness of the similarities and differences among the

methodologies, the paper will consider their advantages and disadvan-

tages. Even if we lack detailed knowledge of software design behavior,

it is assumed that design practices are undesirable if they generate

poor designs when correctly applied, or clearly overload known human

processing or memory limitations, or lead to predictable errors based

on our knowledge of human problem-solving behavior. In fact, several

deficiencies of a human factors type were identified by this study,

and will be discussed later.

Where possible, we have gone beyond the human factors analysis

of design techniques, suggesting specific improvements in design tech-

niques. When this was not possible because of a lack of knowledge of

designer behavior, research directions are suggested which might pro-

vide the needed information.

15

INFORMAL SOFTWARE DESIGN TECHNIQUES

From the late 1960's to the present, a variety of prescriptive

techniques for software design have been proposed. Most have been
relatively informal, involving loose guidelines for modular decomposi-

tion (separation of the overall design into modules). Only a few of

the techniques are more fully developed, step-by-step procedures. in

keeping with the terminology of the literature, we will refer to the

relatively formal, step-by-step procedures as "software design methodo-

logies", while the others will be called "informal design techniques".

In order to provide an appropriate developmental perspective for the

discussion of formal approaches, this section discusses the informal

techniques. The reader who is familiar with the literature on "top-down"

and "bottom-up" techniques, "structured programming", "stepwise refine-
ment", "information hiding'", etc., might choose to skim or bypass this

section.

BASIC APPROACHES

A review of some of these less proceduralized techniques is

presented by Boehm (1975), who also considers the relative advantages

and disadvantages of the techniques. The techniques consioered by

Boehm are "bottom-up" design or programming, two variation- of "top-

down", "structured programming", and a "model-driven" approach.

When using a bottom-up approach, a designer must first identify

those functions or routines whose development seems most "important" to

the overall design. "Importance" can be defined in terms of efficiency,

cost, development effort, etc. As the term "bottom-up' implies,these
functions are at the lower levels of the hierarchical structdre that is

being developed to represent the design. Once these routines are devol-

oped, the designer develops a "test driver" to allow testing of these

mocules and their interactions, a "computation monitor" to control the
order in which these functions are executed, and any necessary input-

output modules. Finally, input-output "controllers", initialization

routines, etc., are developed and the entire design is then tested for

errors.

4 •16

As applied to program development, a bottom-up approach involves

constructing low-level routines and then constructing "drivers" to con-
trol interactions among the low-level routines. There are two primary

advantages to this approach. First, "high risk" components (e.g., pro-

cessing natural language, real-time sensors, etc.) can be identified

early. If it is determined that it is not feasible to implement these

components as originally specified, the design specifications can be

changed before a great deal of effort is expended. Second, the emphasis

on the lower levels encourages the development of reuseable modules

that can be applied to other designs with little or no modification.

The bottom-up approach, like the other approaches discussed

in this section, can be used even for a pure design effort. The de-

signer identifies the "important" functions, designs m,'dules to accom-

plish them, and only then turns his or her attention to the design of

the remaining modules.

A primary disadvantage of this approach is that very little

attention is given, early in the design process, to the interactions

among modules. It may well be the case that interactions among modules

present more problems than the development of the individual modules.

In addition, a bottom-up approach does not give a great deal of

attention to overall system requirements, including user interfaces

and data structures. Furthermore, in an effort to use tne lower-level

components that are already developed, the higher levels of the design

may be "patched up". As a result, the total design may be very diffi-

cult to implement, understand, or modify.

"Top-down" methods are much more commonly used, and are often

advocated, especially for the later stages of software development (pro-

gramming through integrated testing). A particularly common top-down

method for software development is called the "top-down stub" approach.

In this approach, the designer first considers the overall system re-

quirements and develops a top-level program to meet these -equirements.

This top level contains the necessary logic to control the lower-level

17

I! !7 !I I

functions, which are initially represented as "stubs". In successive

design steps, these stubs are then aecomposed into control logic and

necessary subfunctions, which are also represented as stubs.

As one might expect, the areas in which bottom-up methods are

particularly strong -- identification of high-risk components and develop-

ment of reuseable modules -- are the areas in which top-down methods are

weakest. The advantages of top-down methods include early attention to

the interactions among modules and a more coherently defined higher level

in the design, which allows for easier comprehension, testing, and

maintainability. In general, it might also be expected that discrepancies

in the original problem statement (user requirements) might be detected

earlier and with less effort when top-down methods are used than when

using bottom-up techniques.

The "structured programming" approach to design is a direct ex-

tension of structured programming concepts (e.g., Dahl et al, 1972) to

the design process. The principal concepts are the use of hierarchical

modular structures, the use of a restricted set of control structures,

(e.g., IF...THEN...ELSE, 00 WHILE), and having a single input and output

for each module. This approach is compatible with the other approaches

mentioned in this section and is especia'ýly useful when demonstrations

of design "correctness" are important.

"Model-driven design" attempts to relate, frequently through a

matrix representaticn, the "requirements" that are to be satisfied and

the "properties" of the computer sysLem involved. Design generally

proceeds in a top-down fashion, but the use of such a matrix allows the

early identification of high-risk components that may be best developed

in a bottom-up fashion. This technique has not been extensively used

and appears to describe the management of design activities more than

the actual processes involved in design.

Other fairly general design techniques have also been mentioned

ýA in the software design literature. "Middle-out" design requires the

L M

ItII!$ /IIl l|'II ' I

designer to identify and initially develop the most "important"

routine or function; in this regard, this approach is similar to a

"bottom-up" approach. The primary difference is that this routine

need not be the lowest level of the final design. Rather than being

function oriented, as in bottom-up design, the identified routine

could be control-oriented, input-oriented, etc. In general, this

routine is selected because of constraints on the final implementa-

tion, such as hardware constraints, user interface considerations, etc.

Like a bottom-up approach, designing middle-out tends to lead to

the early identification and development of high-risk components. The

principal disadvantage is that the remainder of the design may be
"patched up" to work with the first routine developed, so that this

high-risk component will not have to be modified. Also, like a bottom-up

approach, this technique may involve the modification and use of pre-

viously developed modules. The actual advantages and disadvantages

of this approach depend on where in the final design structure the

initially developed module falls, since a middle-out approach could,

conceivably, proceed in a strictly top-down or bottom-up fashion.

With interactive systems, design may proceed in either an

"inside-out" or "outside-in" manner. An inside-out approach begins

with a description of basic implementation environment capabilities

and functions and attempts, through adding higher level modules, to

match these basic capabilities and functions to user requirements.

An outside-in approach, on the other hand, begins with a description

of the user requirements and attempts to work down toward the available

capabilities. While an inside-out approach leads to the development of

a very efficient design, in terms of hardware and software, an outside-in

approacn tends to ensure that the initial statement oý user requirements

is practical, and if this is not the case, leads to an early reformula-

tion of these requirements.

These approaches describe, only at a very general level, how

design should be done. They do not specify, in a formal or procedural

19

way, the actual steps involved in constructing a design. In addition,

they do not provide explicit criteria along which the final design or

the current state of a developing design can be evaluated. The formal

methodologies, discussed later, provide much more detail in terms of

procedure, decision criteria, etc. In between these two classes are

several developments which involve very general procedures and criteria
for modular decomposition. While not procedurally detailed, these
techniques provide some high-level guidance with respect to individual

design decisions.

STEPWISE REFINEMENT

In stepwise refinement (Wirth, 1971), the designer starts at the

top level of the design, which is essentially a statement of the goal
"solve the problem". Design then proceeds in a breadth-first, level-by-

level manner. These levels can be differentiated with respect to the

amount of detail involved. At the early levels, the designer does not

consider specific programming languages or other aspects of the environ-

ment in which the solution will be implemented. As Ledgard (1973, pp.

45-46) points out, this stage of the design might contain statements like
"compute the nth prime number", "find the roots of the equation", or

"process the payroll". We would characterize this as the abstract plan

level. Toward the lower levels of the design, the design works in terms

of the implementation environment. The intermediate levels of the design,

the detailed plan level, represent a transition between these very gen-

eral and very specific expressions.

Ledgard (1973) extends the definition of stepwise refinement by

incorporating Mill's general top-down concepts (e.g., Mills, 1971) and

Dijkstra's definition of structured programming. This technique, called
"meta-stepwise refinement" by Shneiderman (1976),provides a clear expres-

sion of the general concepts underlying stepwise refinement. Ledgard's

approach has six primary characteristics. First, the designer must

develop a clear understanding of the problem before proceeding. Second,

the initial stages of the design are independent of considerations of

the implementation environment; such considerations are only included

20

at lower levels. Third, design is done in discrete levels, although

Ledgard admits the possibility that it may be useful to "look ahead" to

the probable functions of a lower level. That is, some design decisions

may be based on the practicality or risk of the ultimate functions or

modules that may be required by these decisions. Fourth, "the programmer

concentrates on critical, broad issues at the initial levels, and post-

pones details until lower levels". Fifth, the designer must ensure that

each level represents, at the appropriate level of detail, a correct

solution to the problem. Finally, each level is generatEd by "successive

refinement" of the preceding level.

Ledgard advocates that the flow of program control be organized

around the data flow of the problem. He also cautions that "structured"

or localized use of variables is just as important as the use of struc-

tured control flow. In meta-stepwise refinement, thie analysis of data

flow is used to suggest module boundaries in, essentially, an input-

process-output format. The design iz required to be level-structured

and tree structured and each level of detail within the design must

represent a complete solution to the original problem. Level-structuring

and tree-structuring are the two principal evaluation functions employed

and they are applied after each level of detail is refined.

"INFORMATION H!DING"

Parnas (1972) concentrates on the critsria whereby modularization

is accomplished. Parnas claims that his design by "specification of

information hiding modules" is both compatible with and complementary

to stepwise refinement techniques.

When the "informatiorn hi'.ir:g tcchnique is used, module boundaries

are selected in such a way that each module has "knowledge of a design

-4ecision, which it hides from all others". Fnr example, the details of

a data structure might be kept in a single module, so that other modules

need no information about the physical details of the data structure

in order to operate on it. In effect, "information hiding" is a heuristic

21

technique which may aid the designer in achieving high functional
coherence of modules and module independence.

GOAL-DIRECTED PROGRAMMING

"Goal-directed programming", as advocated by Cichelli and
Cichelli (1977) also extends the concept of stepwise refinement. The
primary objective of goal-directed programming is to "group statements
into functions or blocks each of which can be treated, at any arbitrary
level of nesting, as a single statement" (Cichelli and Cichelli, 1977,

p. 58). Like the other techniques considered in this section, this
objective Is concerned with decomposing a design into independent
functions, or modules.

The additioi made by this technique is the concept of an explicit

statement of the goal to be achieved by the design. This approach in-
volves stating the goal to be achieved, deriving an assertion that will
be affirmed when the goal is true, and then deriving a logical con-
dition, from this assertion, that will become true when the assertion

becomes true. By iterating these steps, the original goal is decom-

posed into s~ubgoals. At a general level, this technique is similar

to the use of a means-ends analysis heuristic.

22

DESIGN DOCUMENTATION TECHNIQUES

Design documentation techniques should also be considered

prior to a discussion of formal design methodologies. A variety

of such techniques has emerged, with widely varying information

content. Like the informal design techniques of the previous sec-

tion, these documentation techniques have greatly influenced the

software development process. Because they may very well constrain

or "lead" the designer, or at least focus the designer's attention

on particular aspects of the design, documentation techniques are

intimately involved with the design process itself.

Both graphical and verbal documentation techniques are in

widespread use. These are not mutually exclusive, since the graphi-

cal techniques invariably contain verbal information, and the verbal

techniques often make use of spatial cues, such as indentation, to

convey information. The most familiar graphical technique is the flow-

chart (Figure 4a). Flowcharts are used less often for high-level soft-

ware design than for detailed program design. This is primarily because

flowcharts emphasize the flow of control, rather than program structure.

Another graphical technique which is widely used for software

design is the "structure chart". A simple structure chart was pre-

sented in Figure 3a. Unlike the flowchart, the structure chart empha-

sizes the basic function of each software module and its relationship

to other modules, but contains little information about the flow of

control. In Figure 3a, for example, the "INDEXER" module may call any

of the other five modules, as needed, and does so by transferring con-

trol to the called module. However, the figure does not explicitly

state whether all modules are used, in what order, or how often.

Several variants on the basic structure chart have attempted to

incorporate some additional information about control flow. While

avoiding the detailed control flow informaton commonly found in fl~w-

charts, several groups have adopted structu.,e charts with logical "and"

"23

S-j- -

(a) Flowchart

t'N 0
51 7eI

S~(b) Program Design Language

SORT (TABLE, SIZE OF TABLE)

IF SIZE OF TABLE • I
DO UNTIL NO ITEMS WERE INTERCHANGED

DO FOR EACH PAIR OF ITEMS IN TABLE (1-2. 2-
3. 3-4. ETC.)

IF FIRST ITEM OF PAIR •SECOND ITEM 0O'
PAIR

SINTERCHANGE TH(. TWO ITEMS

ENDIF
• .. EN DDO

"• ~ENDDO
i ENDIF

Figure 4. Flowchart and Program Design Language
• ,, Representatives of a Simple Sorting Algorithm

4- MAE . -.

L[I + C

TA8L1j~j)+ T 2M

•_.P

and "or" symbols, and with explicit indications of iteration. For

example, Figure 5a (from Bell et al, 1977) contains a structure chart

with logical "and" ("&") and ."or" ("+') symbols. Figure 5b

illustrates Jacksin's (1977) approach, in which asterisks ("*") are

used to indicate iteration (the "Process Record" block might be read,

"Process each record in turn"), and small circles are used to indicate

"selection" (either "Process Issue" or "Process Receipt").

The principal verbal design documentation method is the "Program

Design Language", or PDL, shown in Figure 4b. The figure shows a PDL

version of the sorting algorithm of Figure 4a. PDLs are similar to

programming languages insome respects, but are usually much less formal.

An informal PDL might involve a specified set of control constructs
(e.g., IF. .. THEN...ELSE, DO WHILE, etc.), but otherwise leave the de-
signer free to use any wording which seems aroropriate. There is

evidence Lhat the use of PDLs, rather than flowcharts, during detailed

algorithm design results in superior design performance (Ramsey et al,

1978), but no controlled research on PDL use for high-level dabign tasks

is known to us. It is clear, though, that the PDL concept can be used

at any level of design, since it can be used in such a way as to empha-

size either modular structure or flow of control, as desired.

A flowchart-like approach which also attempts to capture some

modular-structure information is the "Chapin Chart" (Chapin, 1974)

illustrated in Figure 6a. This approach uses embedded rectangles to

show containment of procedural steps within a program module, and

utilizes special conventions for "DO UNTIL" (slashes at left of re-

peated block), "IF...THEN.. .ELSE" (binary question, with two columns

to indicate actions for the two possible conditions), and reference to

a procedure defined elsewhere (name of procedure in ellipse). To make

the example clearer, the corresponding Program Design Language speci-

fication -is presented in Figure 6b. The Chapin Chart is an improvement

over standard flowcharting in some respects, but it is rather cumber-

some. It does not appear to be in wide use at present.

• 25

ka) Frorn Bell et al (1977)

RI TUAII FF LA

EVA;

(b) FrEom aKT l(97

POYq naS

- AM1 4
O(~ e l. CLE A ' .0"

(a) Chapin Chart (from Chapin, 1974)

EXAMPLE

-STARTUP
Prepare l-O;
open file; (1)
clear counters

MAIN

Cldosefilone; d (2

//pRead acrneord

disply cndmessage

Close le;

displ\ and coulyt3ers;

disla e-nd message;

9ND

(b) Corresponding PDL Description

EXAMPLE: PROCEDURE;
STARTUP:

PREPARE I-0;
OPEN FILE;
CLEAR COUNTERS;

MAIN:
DO UNTIL END OF FILE ON READ;

READ A RECCRD;
IF DATE BETWEEN MAY I AND JULY 31

THEN CALL PRCCESS;
ELSE WRITE ERRCR MESSAGE;

END;
WRAPUP:

CLOSE FILE;
DISPLAY COUNTERS;
"DISPLAY END MESSAGE;
CLOSE I-0;

END EXAMIPLE;

Figure 6. Simple Example of a "Chapin Chart",
with Corresponding POL.

27

_.- - ._______ - ~i' -. -t

The HIPO (Hierarchy plus Input-Process-Output) chart is a

graphical documentation technique with a somewhat different erFpha-
sis than any of the techniques already discussed. In its most

common form (see Figure 7, from Stay, 1977), the HIPO chart identi-

fies the input data elements, the output data elements, and the

processing components of a software module, but contains little or

no information about data structure. Modular structure is conveyed

somewhat implicitly, in that each processing component (e.g., "Vali-

date receipt items") can be further defined by a separate HIPO chart,

A if desired. Standard HIPO charts contain virtually no flow-of-control

information. The primary emphasis in HIPO charts is on data flow, an

aspect of the design which is not significantly addressed by the docu-

mentation methods previously discussed. Thus, the HIPO chart in the

figure indicates that the subprocess, "validate receipt items", receives,

as input, both "purchase orders" and "receipts". It produces, as output,
"error messages" and "valid receipts". The "valid receipts", along

with "price master" information, are used by the second subprocess to

produce "gross item price" information, etc.

Although HIPO charts omit some relevant aspects of the design,

they are very readable, and may be supplemented by information of other

types (e.g.. data structure definitions and procedural specifications
of the subprocesses). One extension which is receiving attention is

the use tif a PDL specification within the "Process" block itself, rather

than a simple list of process components. This provides flow-of-control

information, and makes the nature of the process clearer, but is often

limited by space constraints.

The HIPO chart appears to be the only major documentation tech-

nique which fully combines data flow ;nformation and software struc-

ture information in a single figure. When other documentation techniques

are used, data flow is often specified in designs by use of a separate

table or graph. For example, Figure 3b illustrated the use of a data

flow table in conjunction with a structure chart. Directed graphs,

or "bubble charts" are sometimes used for this purpose.

177" 777-

Al

L s. co1
PAAk -2

K~d$$ *1. o.Mvsc.l

Fiur 7. 2HEPO Char

(fro Sty 197)

Copy 5U*drjl
1

j t~on . 41

41 ~ * 04V ~$~29 j

Data structures can be described either verbally or graphi-

cally. Typically, a verbal description is used in high-level design

documents in which the emphasis is on the overall data structure

(e.g., Figure 3c). Later ,n the development cycle, when details of

record layouts are known, graphical techniques may be employed as

in Figure 8 (from Wasserman, 1977). Graphical descriptions are

particularly helpful when complex list structures are used, since

complex pointer relationships can be indicated by arrows.

In certain specialized application areas, such as programming

language processing, specialized and relatively sophisticated design

documentation techniques may be used. One such technique is illu-

strated in Figure 9. This example is taken from the design specifi-

cation of a FORTRAN-based precompiler (Otey et al, 1978). The speci-

fic-ation method involves the use of a formal language grammar which

describes the allowable statements in the precompiler language. In

the exampl3 (Figure 9a), the allowable forms of an "IF.. .THEN" or

"IF.. .THEN.. .ELSE" statement are defined. In addition to this

syntactic information, the grammar is "augmented" with semantic informa-

tion which defines the behavior of the precompiler when such an "IF"

statement is found. These actions define the meaning or effect of the

statement, and a-e specified with a set of specialized grammar elements

and through invocations of a set of "primitive" functions. The primi-

tive functions can be defined in any way convenient for the designer.

In the example, they are defined via an informal POL (Figure 9b).

More detailed information about this specification method can be found

in Otey et al (1978) or Ramsey (1974).

The emphasis in this specification method is on the flow of

control. Modular structure is less important in this application,

since all grammar "rules" are recursive -- that is, a rule can invoke

itself, either directly or through another rule. Any data structures

used in this specification are defined separately.

30

- - -- - - - - - -L--- L. . L..-- .r--

- I.
.T-

'4a

SybdmL ?hI* ?L olct
.0I Ul*t Sc.,. V.,,o, Zd..Cltl~t oI~l

E

(frm Wssema, 1977).010

SI 1SD A PlIl
lt ~ l

THIS~~~1 PAC ti UASITYpýOJ

• ,5J_~_ + :_c_* c * ...

-~ Figure 8. Example of a graphical data structure description
(from Wasserman, 1977).

31

"1*-++
'• • . . 4 2.4. . . V ,, -++ + _ i

(a) Augmented Grammar Specification for "IF" Statement

IFSTATE'4ENT
"IF'

8OOLEAN EXPRESSION .ERROR(32)
"THEN" .ERROR(33)
.O0(PUSH OPERATIONTRUE FALSE IND ICATOR ONTO BOOLEANTPuTL4STAC0)
C .TEST(OPERATION.TRUEFALSE _NO0CATOR = "FALSE")

.SCANTO LOCATION(1)

. TRUE)
STATEMENT
.LOCATION(1)
.DO(POP TOP ELEMENT FROM BOOLEAM TRUTH STACK AND SAVE AS

OPERATIONTRUE FALSEJI4ICATOR;
("ELSE"* /I OPTIONAL ELSE CLAUSE */
C -TEST(OPERATIONTRUE-ckLSE I'ODICATOR *"TRUE")

.SCAN TO LOCATION(2)
: .TRUE)

STATEMENT
.TRUE)

.LOCATION(2) ;

(b) PDL Specification of Primitive Functions

FLTOPS PRIMITIVES

.SCANTOLOCATION (ARGUMENT):

/* DISABLE ALL FLTOPS OPERATIONS 6.XCEPT BASIC FCF PARSING, VI
I* UNTIL CORRESPONDING LOCATIO4 (IOE4TIFIA3LE 3Y NUMERICAL
/* ARGUMENT) OF SAME INVoCATION OF SAME RULE IS REACHED. "/

IF FLTOPS FUNCTION = SYNTAX OR SCAN THEN RETURN;
ELSE DO;

SAVE FLTOPS FUNCTION VALUE AND RESET FUNCTION TO SCAN;
SAVE INFORMATION INDICATING 7HE RULE AND LOCATION AT WHICA

FLTOPS FUNCTIONS WILL RESUME IN LOCATIONj!'IFORMATION;
END;

END .SCA4_TOLOCATION;

.LOCATION (ARGUMENT):

/ ****w********f **#** ********** *****ww*~** /r
/* SEE .SCAN-TO-LOCA'IO-. 41

IF FLTOPS FUNCTION NOT EQUAL TO SCAN THEN RETURN;
IF CURRENT LOCATION CORRESP040S TO TAAT INDICATEO IN LOCATION _'NFOR4ATION

SAVED BY THE LAST INVOKED .'SCAN TO LOCATION PRIMT TIVE
THEN RESET FLTOPS FUNCTX ON TO SAVED VALUE;

ELSE RETJR4;
END .LCCATION;

Figure 9. Use of Augmented Language Grammar and
Supporting Primitives to Describe a
Precompi 1 er.

THIS PAGE IS BEST QUAMITY FRACTILE
S32

It should be clear, from the material presented in this

section, that there are a wide variety of design documentation

techniques in common use (many less common techniques were inten-

tionally omitted from this discussion). These techniques may be

verbal or graphical, and they differ in their relative emphasis on

modular structure, flow of control, data structure, and data flow,

as summarized in Figure 10. Although there is a good deal of per-

sonal preference and "institutional inertia" involved in the.se-

lection of documentation methods for particular projects, it is

also clear that no one documentation technique is appropriate for

all types of design. The selected technique(s) must convey the

salient features of the design. Any of the basic classes of design

information may be highly relevant or even irrelevant to some class

of design problem.

A,

z-3

.,I

. • A 3

(D

w I f ea

*,-
4-). wt L

4-) (a CU

u. 0

o 10 -0

*rro
00

C L)

c >-
V) 0 0i

*.,- 0. -

)J - .4. -0S.
C 3 00 IC c

4.) 4-331 .C. i

ur CC
o 0

S- E3

Or-

4J. U* 0

j 4-. 4

0 r- 0

4-)U' 4J C)t

;_ S. * 0 UD
M it -I 4J cm 4j 3A S ~ 0 4- C=

S~4- Sf e- *- - I ,- S- 0 I I 0 0
-Z a"wc. mdiea 4 -C d

= .. S - u (a (- a (J).)
u z== C-U4J 0 -1Sm

44~~~~~d 4- 0oc>) U I 4-S- f
o u4. ur 0) S - z U

-J. V) V)4- 0.
10 C- Cr

34, .- E i I

DESCRIPTIONS OF THE FORMAL DESIGN METHODOLOGIES

This section contains descriptions of the four formal software

design methodologies which were surveyed in this study. For the most

part, evaluative conments are deferred until the next section of the

paper. The amount of descriptive infortiation provided here is a func-

tion of the level of detail to which the approaches have been developed.

For example, there is more detail here about "Structured Design" than

about other approaches because the published literature describing the

approach contains more detail.

Before proceeding, tne reader should be aware of several terms

which will be utilized in discussing the design methods. These terms

are concerned primarily with evaluation functions, and represent con-

cepts relevant to many of the design methodologies, althcocgh special-

ized terminology may be used for these concepts in individual methodo-

logies:

(l) INDEPENDENCE is E. qualitative, and usually subjec-

tive, assessment of the degree to which the design

of one module is unaffected by the design of other

modules. In general, a modular decomposition which

maximizes independence is desirable.

(2) FUNCTIONAL COHERENCE is a qualitative assessment of

the degree to which the components of a module are

related to one another and to the accomplishment of

a single simple objective. In general, a modular

decomposition which maximizes functional coherence

is desirable.

(3) FAN-OUT refers to tha nLmber of immediate descendant

modules possessed by a module.

(4) FAN-IN refers to the number of modules (in a non-

hierarchic modular structdre) from which a single

module is descendant.

3

(5) SCOPE OF CONTROL refers to the set of modules

formally under the control of a particular

module. Module B is in the scope of control

of module A if A may directly or indirectly

invoke the execution of B. Generally, the

scope of control of a module includes the

module itself and all of its descendants.

(6) SCOPE OF EFFECT refers to the set of all modules

whose functioning ca '-e affected by the behavior

of a par'ticular modu'.•.. This set is not neces-

sarily restricted to the module and its descen-

dants, but may include any other module to which

data are passed. For example, error flags might

be used to allow a module to control other

modules outside its formal scope of control.

36

STRUCTURED DESIGN

The first approach we will discuss is "Structured Design" as
advocated by Stevens, Myers, and Constantine (1974), Myers (1975), and
Yourdon and Constantine (1975). This approach involves an initial con-

sideration of data flow followed by decomposition of the system under
design into subparts. These stages are applied interactively, and rather

freely, as they are required to achieve greater detail. At the higher
levels, modules are described in terms of their functional effect on the
data. The emphasis is on functional coherence of the modules and little

attention is normally paid to the flow of program execution.

Overview

In Structured Design, the designer begins with a functional de-

scription of an overalE system: its objectives, requirements,inputs,
and outputs. The designer uses this information to determine the data

flow of the system. The data flow definition is then used to determine
preliminary module boundaries. From an analysis of data flow and identi-

fication of preliminary module boundaries, a functional description of
both modules and interfaces is produced. Structured Design uses a FLOW

DIAGRAM or BUBBLE CHART to represent data flow and assist in identifying

module boundaries. It then uses a STRUCTURE CHART to depict the modules

and their interfaces.

Depending on the properties of the system's data flow, two major

classes of design problems are recognized and a unique problem-reduction
operator is associated with each class. These operators are TRANSFORM
ANALYSIS and TRANSACTION ANALYSIS. The principal evaluation criteria,
which are used with both forms of analysis, are COUPLING (independence)

and COHESION (functional coherence).

The technique called TRANSFORM ANALYSIS is used when it becomesL i .apparent that a problem decomposition produces an AND relationship among
the parts. This means -hat the initial task requires the performance of

37

subtask one, AND subtask two, AND so on, for each execution of the initial

task. The other possibility is TRANSACTION ANALYSIS. In this case, each
execution of the initial task only requires the performance of subtask one,
OR subtask two, OR one of the other subtasks. This is called an OR re-

lationship among the subtasks.

Transform and/or Transaction analysis are used, as appropriate,

along with a set of design heuristics, to iteratively decompose the

design into detailed module specifications. A design is complete when

a set of modules and their interfaces have been specified in sufficient

detail that the designers are convinced of three things:

1. Implementation of any module is a well defined task

with little impact on the implementation of any other

module if all are implemented as described.

2. Correct performance of any module (including the root

module and, therefore, the system itself) depends

only upon the correct performance of all modules to

which it fans out.

3. All modules required are defined so as to be straight-

forward coding tasks, requiring in the neighborhood

of one or two pages of source code.

Detailed Discussion

The first step in Structured Design, whether transform analysis or

transaction analysis is to be used, is the restatement of the design prob-

lem in terms of the high-level functions that will be involved, rather

than the procedures required to accomplish those functions.

As an example, consider a patient-monitoring system for a hospital.
This system should monitor, through an analog device, various physiolo-

gical readings and notify the nurses' station if any readings are outside

of a specified range. A FLOW DIAGRAM or BUBBLE CHART to represent this

problem is shown in Figure 11.

IF

38

ý!14& Vie e 0X,4P

Read~~,• St. or inN i fy

'4-t

Most Central M~ost
3bstract abstrac:

input data transform output data

Afferen: flow = " - Eff rint fow

Figure 11. A Simple Flow Diagram (adaptcd from Myers, 1975).

Transform Analysis

When the initial levels of decomposition produce an AND type of

hierarchy, such as that shown in Figure 11, TRANSFORM ANALYSIS is suggested.

Unless experience with a particular problem area dictates otherwise, this

is the suggested way to begin any Structured Design. The following six

steps outline the general operations employed in design using the trans-

form analysis strategy.

1. The system is described in terms of its major func-

tional components (see Figure 11).

2. Conceptual input and output flows of data are identi-

fied from a functional standpoint. These streams may

separate and/or combine. They are physical where they

enter and leave the system, but become more conceptual,

or abstract, farther in.

3. The major conceptual flow of data is identified from

input toward the CENTRAL TRANSFORMS and backward from

output to the CENTRAL TRANSFORMS. For both input and

output the "point of highest abstraction" is identified.

"This is the point where it enters and leaves the CENTRAL

39

m..A, ý ' -- .-P

TRANSFORM REGION. (Steps 2 and 3 are also indicated

in Figure 11.)

4. Using the above, generally depicted as a bubble chart

showing flow, combination, separation, and transforma-

tion of data, a structure is designed. This structure
depicts modules that are identified as sources, sinks,

and transformers of data. The function of each module

and its interfaces should be briefly described. The
initial design for the problem introduced in Figure 11

is shown, as a STRUCTURE CHART, in Figure 12. The

module identified as "obtain a patient's factors" is a
t source (or afferent) module (it require5 no inputs

4 from other modules), "notify station of unsafe factors"

is a sink (or efferent) module (it produces no outputs)

and "find unsafe factors" is the transform module.

The box below the modular structure specifies the data

flow within the design. This information could also be
represented directly on the arcs connecting the modules

(as done by Yourdon and Constantine), but we will use
this type of notation (as used by Myers) primarily to
increase clarity.

5. Breadth first, and level by level, each of the modules

is expanded into subfunctions using all of the preceding

steps. The purpose of this expansion is to identify a
structure that contains the most peripheral source and
sink modules and contains all of the functions necessary

to support the data flow described in Steps 1 to 3.

6. A list of design heuristics, including great attention

to module independence and functional coherence, is used

to aid decomposition, at levels of greater detail, of
the transform modules obtained in Step 5.

A complete structure chart for the system considered in this section is

illustrated in Figure 13.

40

Z F2V~i4r RN-

00'1

5-

>1

040

4.-

41 1

.0

a
.0

I- LO

i. 0

ul N 0 4

C6. LLA

ZIA<I

It,

o424

I

(A -

-I ' I

zj ,-

I *', 2

I l

C- A I

LK~1
w 11

0 a

a ~ a43

Transaction Analysis

When Steps 1 to 3 of Transform Analysis produce a data flow

graph with a transform that splits an input data stream into several

discrete output streams, then TRANSACTION ANALYSIS is suggested.

Such a data flow graph is illustrated in Figure 14. In this case,

"T" is the TRANSACTION CENTER and the "(D " symbol is used to indi-

cate that "W", "X", "Y", and "Z" are all disjunctive (an "OR" relation-

ship). This structure should be compared with the linear ("AND" re-

lationship) shown in Figure 11.

Another way in which TRANSACTION ANALYSIS might be suggested is

when several different processing states treat the same set of input

data in different ways. When the system is better conceptualized as

a recognizer and dispatcher of different information sets to different

subfunctions, an analysis of these transactions is the suggested design

strategy. Naturally, the transaction structure will also consist of

components, and the design of any subcomponent may well return to the

transform analysis strategy. Using transaction analysis, the follow-

ing steps are taken:

1. The sources, both data and preconditions, of each

transaction are identified.

2. A structure is identified that separates the func-

tions of transaction, identification, analysis, dis-

patching, state chanqe, and transformations.

3. The different transactions and the processing that

each triggers are identified.

4. Ways to functionally combine processing tasks are
given careful consideration, but only after Steps

1 to 3.

5. A module is specified to process each transaction

or other functional task that has been identified.

44

ý5

CdL

0

(aS...
r•n

LL- 0

>.,,.

.4)., a

- C

. j •s .•

S•,.'°. -0'..

45C

M "if

6. Levels of greater detail are reached in two steps:

a. First each transaction module is subdivi-
ded into action modules,

b. Then each action module is described in

detailed steps.

Similar actions and common detailed steps may be

shared by these two levels.

As in Transform Analysis, the design is represented as a struc-

ture chart and the principal evaluation criteria are coupling and

cohesion.

Evaluation Criteria

Structured Design is primarily a collection and description of a

set of evaluation and guidance heuristics. The two primary criteria

by which module boundaries are initially defined,and by which modules

and their interfaces can continue to be judged, are independence and

functional coherence. Each of these will be described in structured

design terms.

First, however, a perspective on these measures should be intro-

duced. The measures are subjective evaluations, intended to be made by

experienced designers on their own or others' designs. When a module

is being judged, the interfaces of the module, its scope of effect, and

scope of control are all important. However, it is also important to

consider how, and how well, these things are contained in the module's

parent module. Likewise, especially in the determination of functional

coherence, the components of a module and their relationships should

be examined.

Coupling -- COUPLING is the term used to denote independence in the

•2 •structured design literature. The objective of minimizing coupling

among modules is intended to maximize the independence of modules.

46

S"0:*¶

Six categories, or levels, of coupling are possible. When

t,"luating the coupling of a module it is considered pairwise with all

other modules to which it is related in any manner. The principle

underlying this criterion is that coupling should be minimized and that

certain types of coupling are preferable to others. Furthermore, many

of the design heuristics to he described later place additional restric-

tions on module coupling.

The categories, or levels, of coupling are described below

in the order of more desirable to less desirable.

1. DATA Coupling occurs between two modules that both

reference the same data variable(s) or structure(s).

In this case, the data are local to the coupled

modules and inaccessible to others.

2. STAMP Coupling arises when the rmechanism for making

data available to a limited set of modules does ex-

clude others from access. For example, named COMMON

in FORTRAN.

These two types of coupling are distinguishable only in certain

implementation environments. Certain parameter passing mechanisms

are such that either description might apply. In general, the

more advanced programming languages have efficient mechanisms for

restricting the sharing of information to parameter passing

without either form of coupling, or to data coupling only.

3. CONTROL Coupling describes the relationship that exists when

the results of an operation in one component are used to

direct processing in another component. This type of coup-

ling is worst between seemingly unrelated components. Be-

tween a module and one of its immediate subcomponents, con-

trol coupling is more acceptable. If at all possible, how-

ever, it should be limited in the direction of cause and

effect so that module controls component rather than the
reverse.

47

'4i

4. EXIERNAL Coupling occurs by way of a mechanism that allows one

module to declare free access by other modules to its contents.

Generally, an assembler language must rely on this type of

coupling because more sophisticated mechanisms are unavailable.

Clearly, some form of control and external coupling must exist

between any two related modules. However, when the passing of

control is implicit, or along well established lines, and the

permission and access conventions for data are disciplined and

adhered to, then coupling is properly minimized. When mechanisms

exist that allow unconventional coupling, then the job of evaluation

becomes more difficult.

5. COMMON Coupling is made possible by mechanisms such as FORTRAN's

blank common or uncontrolled use of "global" variables.

Assembler and machine languages usually have no mechanism to

prevent it. It occurs when data sharing and communication are

obscured through the use of completely uncontrolled channels.

6. CONTENT Coupling occurs when one module refers to something in

the domain of another with no explicit permission by the second

module.

Both of these types of coupling arise through a lack of convention

or mechanism for communication between modules. In certain -1viron-

ments the only way to avoid dependencies of these kinds is to make

the necessary conventions and mechanisms a part of the design.

Cohesion -- A design may be decomposed into a set of modules which are

highly independent but which are still low on the scale of functional co-

herence, or COHESION. Independence (coupling) only requires that a sharp

and well defined line be drawn between each module and all others. Func-

4" . 'tional coherence addresses what a module does and why it does it. Perhaps

43

•=1"

the 3ingle most effectivP measiire of functional coherence is the number

of words it takes to describe tne module in the terminology of the

design. Yourdon (1976) suggests that "The function of a maximally co-

hesive module can be described in one sentence with a transitive verb

and a single, nonplural object."

The following descriptions are used to more closely describe the

cohesion of a module. These descriptions are meant to apply to the corn-

ponents of a module, why they were brought together, and what they accom-

plish as a whole. Generally, when one description applies, those lower in

the list will also apply, but only the first is used for evaluation. The

descriptions are seven points on the structured design scale of cohesion.

The scale is not linear. A large gap exists between numbers one and two,

and another large gap between five and six. High cohesion is achieved

when the relationships among comoonents of a module are near tne beginning
of the scale.

1. Structured Design assigns highest cohesion (called FUNCTIONAL

cohesion) to a module whose components combine to form a

conceptual unit. This is why the number of words to describe

it is a powerful test. However, in a complex design even a

tightly bound conceptual unit may be very context dependent.

Modules found in programming libraries are generally those

that are high in both independence and in cohasion.

2. SEQUENTIAL cohesion occurs when a module performs more or less

than a single unitized function and is bound together by the

fact that its components are sequenzial steps that go beyond

such a function, or make up only part of such a function. In

this case there must still be a close association between the
module and a unitized function.

3. When a module contains a set of components that are primarily

WL related to each other because they share a common set of input

and/or output data, the module's strength or cohesion is

COMMUNICATIONAL in nature.

L 49

L--

4. If a module performs a set of functions which are related only
by virtue of being steps in a procedure, but the module does

not perform a complete function, it has PROCEDURAL cohesion.

5. When data structure does not bind the components of a module

together, they may be bound by a common occurrence with respect
to time. This is called TEMPORAL cohesion. "Initialization"
is a term that lacks conceptual unity, and an initialization

module would usually fail the tests of functional, sequential,
and communicational cohesion. "Initialization" describes a
temporal binding. Thus the major description of a module, the
one most characteristic of its purpose, is the one to be

analyzed in determining its level of cohesion.

6. A module is said to have LOGICAL cohesion when it is bound

together on the basis of some logic process shared by all of

its components. The module may be characterized by some
descriptive phrase, but not one that has unity in terms of

function, sequence, communication, or time, (for example,
"recover from error"; or "initialize device" when several

Sdevices exist). If the higher forms of cohesion are missing,

the components included in such a module are going to be

coupled together on a basis that is very likely to change.

7. When none of the above describes the connection between compo-

nents of a module it must be assumed that they are there by

coincidence (COINCIDENTAL cohesion). Such a module can seldom
be described in any simple terms. For reasons of optimization,

or other considerations that take place during implementation, a

code module might very well fall into this category. However,
a design module never should.

50

Structured Design Heuristics

Much of the literature on Structured Design is devoted to the

presentation of heuristic guidelines. These guidelines are not unique,

each is compatible with the other design methodologies, and each has

appeared many times in the literature of the last ten years. Nor is the

list complete; it is intended rather to explain some of the most important

concepts in this area of Structured Design. It reads like a list of DOs

and DON'Ts.

1. Maximize the independence of each module by reducing its

coupling to other modules. For modules that are coupled as

components of a larger module, maximize the quality of their

coupling.

2. Maximize the functional coherence of each module by insuring

that its components are related on the basis of a conceptual

unity. Strive for the attributes high on the list of both

cohesion and independence.

3. Match the structure of the design to the structure of the

problem. Input-Process-Output is oft'en the most economical

structure.

4. Keep the size of a module in the neighborhood of from 10 to 100

lines of code or description.

5. Keep the scope of effect of a module within its scope of

control.

6. Try to eliminate the need for error flags, especially among

several levels of callers.

7. Provide a simple solution to the immediate problem; do not

attempt to generalize.

. . .••51

3___ &.* iL

8. Reduce complexity by isolating dependencies and assumptions, as

by "hiding" them within a minimum of modules.

9. Eliminate duplicate functions, but not duplicate code. Strive
for a set of unique modules with high individual cohesion.

10. Strive for a "Mosque Shaped" design.

a. Check unusually high fan-out or fan-in to determine if a

level is missing.

b. Strive for a fan-out in the neighborhood of from 3 to 9

modules.

c. Early in the design err on the side of too much fan-out.

d. Later in the design err on the side of too much fan-in.

11. Keep the number of parameters to a module small, but keep each
item separate.

12. Within the design framework, allow for the production of:

a. Documentation, keeping separate where the design is going,
where it is, and what has been "finalized."

b. Support tools and project conventions that are necessary

to enhance the implementation environment so that the

methodology can actually be carried out.

c. Module libraries that provide for an exchange between

projects and encourage the production of highly independent

and coherent modules.

52 /
0 ~ ~ ~ Ail

e42

THE JACKSON METHODOLOGY

Overview

Using Jackson's (1975, 1977) methodology, the designer begins

by specifying input and output data structures. The data structures
must be hierarchical, and are constructed using only sequence, iteration,

and selection. With two basic exceptions, the modular structure of the
software will be developed to correspond fully to the data structure,

with decision points corresponding to the iteration and selection points

in the data structure. The exceptions occur when input and output data

structures do not correspond ("program inversion" is used here) and

when the information required for a decision is not available at the

point at which the data structure requires the decision (commitment

to one alternative is used, with "backtracking" as necessary).

Detailed Discussion

The Jackson methodology is advanced as a rational and teach-

able methodology that is practical and does not depend upon the insight

or inventiveness of the designer. This necessarily places a limit on

the size and complexity of designs to which it is addressed. So far,

its orientation seems to be toward the commercial data processing shop

and the applications programmer. It is most clearly suited to the design

task facing an individual programmer who has been given a module to code.
In addition, it requires that the problem statement be in terms of well

defined data structures such as those available in an ongoing data pro-

cessing environment, or perhaps those defined within the context of a

larger project.

Given that the scope and complexity of the problem match these

limitations, the Jackson approach rests on a single fundamental assump-
!!• Ition and provides three alternate strategies for the design process.

The assumption is that both procedural code and data for any given

4f. problem can be adequately described by a hierarchy of three structure

components. These components are sequence, iteration, and selection.

53

--
4;a,

s- IA
1

.AI

These constructs are familiar in the context of program flow

of control, and there is fairly widespread agreement that they are
an adequate and appropriate set of constructs in that context. Because

Jackson's approach is predicated on a one-to-one correspondence be-

tween data structure and program (design) structure, this methodology

also assumes that these three constructs are adequate for describing

the logical data structure. The data structure is assumed to be ex-
pressible as a serial file whose internal logical structure can be

described with a hierarchy of these operators. Thus, a simple file

might have a header record followed by (sequence) a group (iteration)

of one or more records of either (selection) type A or type B.

A Jackson design problem is first completely specified in terms

of its input and output data structures. The data structures are defined

as hierarchical decompositions of serial files. This means that for each

input and output stream a hierarchical structure will be used to completely

specify it. The terminal elements in each hierarchy are single data items

or item types. They are joined together by sequence, iteration, or se-

lection into larger units that can be called records, lines. pages, or

whatever. The intent is that each joining produces a higher-level con-

ceptual unit of data.

When the data structures are defined, the program structure is

created from them. The purpose of the program, of course, is to produce

the mapping of input data to output data. It is expected that for each

sequential, iterative, or selection component of the data structure there

will be a corresponding program component.

Input-to-output mappings fall into one of three categories,

according to Jackson. For each of these there exists a design strategy.

The mapping may be straightforward, involving no data inversions or other

abnormalities. When this is the case a direct correspondence between

4'. - components of the 4ata structure and components of the program structure

is expected. The other two categories (not mutually exclusive) are

caused by "structure clashes" and the need for programmatic backtracking.

54

Structure Clashes

A STRUCTURE CLASH occurs when an input-to-output mapping

requires reordering, recombination, or synchronizetion of input

item to output item. A situation of this type exists whenever the

input and output data structures do not correspond all the way down

their hierarchic structures to the lowest data element. As a very

simple example, consider a program which must read in a matrix by

row and write it out oy column. The technique used to resolve such

problems is called PROGRAM INVERSION. This may take several forms,

involving intermediate files, coroutines, or most commonly, sub-

routines. In each case, though, the incompatible structures are

isolated from each other by utilizing two program modules which

communicate in terms of logical data elements not tied to either

structure. This communicatio, is made possible by a decomposition

of the input data into logical data elements by one module, and

their recombination into an output structure by the other.

Backtracking

Anotner technique often required when using Jackson's Method-

ology is BACKTRACKING, which refers not to the design process, but

to an action which will be taken by the system under design. As a

simple example, suppose that the system is to read a batch of cards,

and cannot determine whether the batch is of type A or type B until

the entire batch has been read. Because of the basic requirement

that the system's modular structure correspond directly to the hier-

archic logical structure of the input file, the "look ahead" approach
is somewhat incompatible with Jackson's methods. He prefers, instead,

to commit to one alternat 4 ve or the other at the outset, thus preserving

an exact correspondence of "select" points in the modular design and

in the input data structure. When the selected alternative proves

to have been incorrect, backtracking is employed to recover from the

incorrect decision and implement the correct one.

"• • 5

"_ _"
55

Backtracking, -hen, is handled like ordinary selection, but in

advance of some of the decision criteria. One alternative is chosen

and processing is directed down that line. The alternative to be pro-

cessed is selected by the designer for a combinati(,n of reasons. It

may be the only case the designer initially considers. It may be the

one most easily recovered from. Or it may be the most probable one.

In any case, when the backtracking situation is identified, it is de-

signed in three phases. First, the alternatives and criteria for their

selection are listed, and one is chosen. Second, in the processing of

the default alternative the selection criteria for the other alternatives

are encountered. These are "quit conditions" for the default, and are

used to select their own alternative. Third, there may be side effects

of having processed the default. These may have to be undone and re-

stored, or they may contribute to the processing of the new alternative.

Jackson's Procedure

Considered in more procedural detail, the Jackson methodology

proceeds through three phases. First, the data structures are defined.

The designer looks for correspondences between the structures, seeking

relationships between the components of one structure and those of

another. When correspondences cannot be found, structure clashes are

identified and an appropriate program inversion strategy is selected.

Next, the program structure is created on the basis of the corre-

spondences found in the data structures. Through the examples he gives,

Jackson's approach seems to require a program structure with the follow-

ing characteristics:

1. Each module is based on a correspondence between data

structures and is, therefore, likely to be a trans-

formation in a data flow pathway.

2. Each module is only described by a simple designa-

tor and is, therefore, likely to be a conceptual unit

based on its function.

56

11P,

3. Module boundaries correspond to subdivisions in

the data structure, increasing the probability

that they are bound on the basis of functional,

sequential, or communicational unity.

4. Jackson's structure notation provides no facility

for describing module interfaces. This may encour-

age the designer to keep them simple or it might be

a source of problems. There is, however, no apparent

reason that a separate interface table (as in Figure

11) could not be used in conjunction with this nota-

tion.

5. The structure notation (Figure 5b) provides only

the program logic of sequence, iteration, and selec-

tion. This lends itself most readily to a block-

structured program during implementation.

The third stage is that of listing program steps. This corresponds

to design on a level of greater detail than the second stage. The program

steps required to produce the input-output data transformations are listed

and assigned to program components. Program steps are classified as pri-

mary and secondary. Primary operations have to do with logic and data

transformation. Secondary operations are those associated with reading,

writing, and moving about in the data structure. Program steps are assigned

to program components on the basis of their class with respect to the

function of a module, and on the basis of where they fit with respect to

sequence, iteration, and selection.

The extensive attention paid to evaluation techni(cues and heuristics

in Structured Design is unnecessary in Jackson's approach. As long as the

design problem meets Jackson's initial criteria and fits into the intended

scope and complexity, it seems that the function of the heuristics is

built into the design procedure and that, in most cases, the method should

produce designs with the characteristics of independence and functional

$- coherence. Whether the development of these designs is easy or difficult

is another matter which will be considered in a later section.! I
57

THE "HIGHER ORDER SOFTWARE" APPROACH

Th,. Integrated Software Development System/Higher Order Software

(ISDS/HOS) approach (Hamilton and Zeldin, 1976b) is included here as a
representative of several methodologies developed especially for use in
very large software design and development efforts. These methodologies
are all broader in scope than the simple design methodologies already
discussed. Although their properties vary, they tend to: (1) make
significant use of automated tools, (2) address software development from
the software design phase all the way through implementation including,
in some cases, testing, and (3) concentrate heavily on the "validation

and verification" aspects of software development.

Although these approaches are not specifically design methods,
they do provide varying degrees of guidance to, and constraints on, the
designer. In addition to ISDS/HOS these methods include: (1) The

Software Requirement Engineering Methodology (SREM; Bell, Bixler, and
Dyer, 1977) developed for the Army Ballistic Missile Defense Advanced
Technology Center (this is the most heavily automated methodology of this
group); (2) The Software Development System (SOS; Davis and Vick, 1977)
developed at the Army Ballistic Missile Defense Advanced Technology
Center; (3) The Information System Design and Optimization System (ISDOS;
Teichroew and Sayani, 1971) developed by Teichroew and others at the
University of Michigan; and (4) The Structured Analysis Design Technique
(SADT; Ross and Schoman, 1977) developed by Softech (the least auto-

mated and formalized of the group).

These methodologies are all oriented toward the structuring of
design and management of large software design efforts. They all pay
iarticular attention to the early stages and the formal specification of
requirements. These methodologies came into existence as a result of
experiences gained on large projects and are attempts to remedy the major

4 6 ,. oproblems encountered by such projects. There is wide agreement that most
failures in large projects during the detailed design, implementation, and
integration st-ages are the result of poor requirements specification and the
afilure to maintain an overall project coherence.

..........

Because they are concerned with large design projects, the "macro

methodologies" specifically address the following topics:

a. Design tracking.

b. Visibility and impact of changes.

c. Control and management of the design with respect to project

personnel.

d. Automating design and implementation tasks.

e. Establishing a framework and set of standards

that prohibit certain problematic courses of action.

The larger the system under design, the more impcrtant are the

design environment and the right management elements. Peters and Tripp

(1977) concluded their review with the observation that "successful

application (of methods) occurs only in supportive environments."

Certainly, the documentation of these methodologies contains much on the

subject of management guidelines, but there is little departure from, or

addition to, the standard literature on management techniques. What s.ets

these methodologies apart, especially ISDS/HOS, is that specific ground

rules are defined based on a formal model.

Overview

"Higher Order Software" is the name of an overall approach to soft-

ware development (and, incidentally, the name of the company which has

developed the approach). The Integrated Software Development System (ISDS)

is a system of software development tools used in conjunction with this

approach. The designer who uses this approach is thus affected by the over-

all HOS philosophy, by the HOS model, and by the constraints and aids of

ISDS. Within ISDS, there is a language (AXES) which is to be used by the

designer to specify the requirements of the system under design. In 3peci-

fying these requirements, the designer is assisted by ISDS, with which he

or she interacts.

I ! 59

S 1__.....____ :

The HOS model contains a number of definitions, axioms, and
decomposition rules which specify the allowable relationships between
a module and its submodules, between a module and its input and output
data, and generally, between pairs of modules which communicate with
each other. As will be seen, the rules which must be followed by the
HOS designer are more formal and more constraining than those of, for
example, structured design. They are also rigidly enforced by the soft-
ware aids.

HOS System Development Model

Before discussing ISDS/HOS as it affects the design phase, it is
appropriate to introduce the reader to the overall plan and philosophy of

the methodology. The HOS approach involves four phases:

1. Concept Formulation
A complete set of system requirements is determined. Both
mandatory and candidate requirements are considered. The
designer draws up the functions to comprise the target system
in the form of a "control map" not unlike the structure chart
used in Structured Design. In this process, the designer re-
cords all questions that arise and sets up a standard way of
recording the answers as they are found. Several iterations of

this produces the finalized specification of the syszem. This
final specification is defined in AXES, the formal language
used in the methodology. The specification defines the target
system, development standards and processes, and support systems

and tools.

2. Program Validation
This phase is based on the AXES specification. It consists of

a detailed analysis of the system functions and interfaces.
High-level resources are allocated to the top layer of system

functions. Simulation performance testing (manual or automatic)R"%

is done to study fault tolerance, err.or detection, timing and
9 accuracy, security requirements, and other aspects of target

system reliability. Development and st;ooort systems that must
be built are identified, scheduled, and begun.

60

3. Full-Scale Development

The inputs to this phase are the system, completely specified

in AXES, and a set of resources out of which the target system

is to be built. This phase, like the preceding two, is itera-

tive. Each iteration involves trial allocation of resources

and analysis of system hardware-software subsets. Any changes

4" discovered in this process may cause iteration back into either

of the preceding phases, or just another iteration of this phase.

A resource allocation tool (RAT) is used in this phase. This

tool is envisioned to eliminate the manual allocation of com-

puter resources to functional components of the system.

During this phase the system specification control map is

reconfigured into a standard architectural form. This form is

hardware independent and contains as few levels as possible.

It is intended to re-express the resource requirements of the

system to the designers in an understandable format.

The resource allocation tool uses the architectural form to

analyze the target system (control map specification) in terms

of time and memory optimization. Given specific time, memory

and other implementation constraints, an optimal software

module configuration is generated. Automation of this process

is expected to allow even the details of a particular machine

to be specified and the automatic production of executable code

from the machine-independent specification.

4. Production and Deployment

Ir, tnis phase the target system is placed into actual use.

Manuals are prepared. Feedback from initial training and use

of the system may cause iteration back into the previous phase.

When the target system is acceptable, it is produced and deliv-

ered to the field.

61

Axioms and Decomposition Techniques

In HOS the designer develops program structures in accordance with

a formal set of design axioms and structural decomposition techniques, as

discussed below:

1. A module is the root node of a family of functions (nodal family).

2. A module's corresponding function is the functional transform-

ation performed by a nodal family that maps an element of the

module's input space (domain) into an element of it-1 output

bpace (range).

3. A nodal family is constructed on the basis of rules (called

AXIOMS) which are sunmnarized below:

a. A module has the ability to invoke and control the

sequencing of only those functions which are its immediate

offspring (Axioms 1 and 6).

b. A module controls the access rights to the variables in the

input and output space of each function it may invoke

(Axioms 3 and 4).

c. A module controls the rejection of invalid elements of only

its own input space (Axiom 5).

d. A module controls the responsibility for the elements of

only its own output soace (Axiom 2).

4. A function is decomposed into its irmmediate offspring according

to three structures implied by the above axioms.

a. COMPOSITION. A module may be composed of two or more

functions invoked in a particular sequence. In this case,

the first function has an input space, and tne last an out-

put space, identical to the input and output space of the

parent module. Intermediate results are passed as output

from one function and input to the next.

- b. SET PARTITION. The domain of a module (its input space) may

•I•• jbe partitioned so that different variable values are assigned

to different offspring functions.
;-k. 62

•,2

c. CLASS PARTITION, When a module has more than nne variali7e in

its inpu: space, class partitioning imy be used such that

different sets of variables are associated with different

offspring functic.ns.

The axioms of ISDS/HOS appear to be /Ery similar to the 'coupling"

principles of Structured Desion, althoLgh they are expressed much more

formally in ISDS/NOS. In pdrticular, ISDS/HOS requires adniirince to thes.2

iadependence rules, whereas Structured Design stipulatTes only that they

are highly desirable. This prcbabiy results mostiy fro- the intention

that ISDS/HOS generate designs which are susceptible tm automated ana~yc's

and "validation and verificatiot,." It should be noted, though, that the

axioms and decomposition techniques :f this methodology ran be appl ied in

t'e absence of any svcrn 'c:,;mated tools, if desired.

The deccmpositioi techniques are somewhat novel. They 3re more

formal than those cf Structur'ed Design •nd are much more constraining.

They provide a very restricted set cf decomposition "move" types which

can be made by the designer, but relatively little guidance is provided

for determining precisely hcw to select and formuiate one of these "moves"

appropriately, In relatively simple situations, such as the examples

provided in the documentation of this approach, selection of an appropriate

modular decor.;position may be quite straightfonrard. In the more complex

situations vihich are the primary reason for existence of the "macro

methodologies," more guidance, perhapz in the form of design heuristics,
may be needed. If the designer succeeds in applying thi~s restricted set

of decomposition techniques, it would appear that high functional coherence

will result almost automatically.

A final aspect of ISDS/HOS which may exert a strong influence on

the design task is the language, AXES, which is intended to allow detailed
description of the design. Although most of the purposes of AXES are those

•- of design documentation, th2 language is also intended to provide the work-

tV, "Iing medium for design development. The formulation of a single language

useable as a design developm'rnt medium, a design documentation medium, and

63

a inechanism for automated processing of the resulting design specification
is a formidable task. The success or failure of this effort may strongly

affect tne utility of this overall approach to automated aids for soft-

ware design.

As actually developed (Hamilton & Zeldin, 1976a), AXES is a rea-

sonably sophisticated language whose successful use probably requires a

designer with significant background in language theory. The language
is reasonably compact, but its notation may be intimidating for the less
sophisticated designer. Overall, the ISDS/HOS approach makes fairly heavy

demands with respect to the theoretical background of the designe-.

.64
~~gm

WARNIER'S "LOGICAL CONSTRUCTION OF PROGRAMS"

Warnier (1974) calls his design methodology the "Logical Con-

struction of Programs"(LCP). In terms of the scope and complexity of

programs to be designed, it is nearly identical to Jackson's approach.

Warnier is much more specific as to the design steps and stages, how-

ever, giving rules and definitions rather than relying so heavily on

examples. The terminology and notation of Warnier's book are much dif-

ferent from Jackson's. However, the two methodologies have a great deal

in common. Both are, in fact, incorporated into a single presentation

by Infotech Information Limited.

Overview

LCP is a relatively mechanical design methodology which requires

that the designer prepare a specific set of inputs and then apply a formal

procedure which "simplifies" those inputs and transforms them into a de-

sign specification in a Program Design Language. As in Jackson's approach,

the first step taken by the designer is a specification of input and output

data structures, using sequence, interation, and selection. The designer

then specifies the relationships between input and output structures.

These relationships are described via formal logic statements. A series

of prescribed operations are then performed to reduce the set of relation-

ships to (logically) simple form, to develop from the data structures

and relationships a program structure, and to evolve procedural statements

(in a PDL) which fill out that structure.

Detailed Description

There are five phases in Warnier's design methodology. The first

three of these correspond to design on levels of greater detail. The

fourth is essentially a finalization of the design using a pseudo code.

The fifth stage is verification. In Warnier's terms, this means that

s-,' the final instruction sequence is checked by hand against the previous

65

levels of detail, the program skeleton, and that is checked in turn

against the analyzed data structures.

The first step in LCP is to assess the data structures (see
Figures 15 and 16). As in Jackson's methodology, this is a decomposi-

tion producing, in most cases, a hierarchy. Each point of decomposition

is based on repeated information or alternate possibilities. Items and

sets of items (at the appropriate level) are listed sequentially. Thus
the structures of sequence, iteration, and selection are, again, the
building blocks. Assessment of data structures, in Warnier's approach,

means not only defining the structures but considering correspondences

of the input and output structures.

Warnier devotes considerable attention to the systematic and formal

analysis of these correspondences. Although input and output data struc-
tures are internally simple, the relationships between them can be complex,
when these two structures involve noncorresponding iteration and alterna-

tive constructs. These relationships are expressed in Boolean algebraic

form, so that a statement of one such relation might be expressed (in words)
as, "the output data set will contain a record of type X if the input data

set contains a record of type A and either a record of type B or one of

type C." A complete set of such output-to-input relational expressions

is developed for any problem involving complexities of this sort. Such

expressions can be represented in truth-table or decision-table form,

and are susceptible to simplification via the ordinary operations of

Boolean algebra.

The'second step is to compose a skeleton program structure (see

Figures 17 and 18). This means that, based on the structure of the data,

the program logic (flow of execution) is to be outlined. Repeated items

will require a program loop. Simple alternatives will require a decision

and a pathway for each. In instances involving complex output-to-input
n I relationships, the resulting program structure is determined from the

Boolean or truth-table analysis discussed above. In some complex cases,

WIN" special rules for deriving the program structure are presented which may

66

I • i " IMI I

- ~ 4-1

LU a

LU

LU Q)Q)a

LU (U-

M w 0 M ta)
4 1 4j w 1.

C.)
4J

CI)

> CLSU ~

4 E)

LU CU 4-
LU CL CL 0-

4Jpi 4i

LU s-

>i 04-
4J -

w 4-) rq

LU U S-
LU- w C.'.0

Q4 S -
LU 04- 4-4-

Q))

L.-

67)

w -

A ~~w a) .- L'W' Uw *-Z a) a) a a
E Z E X2 E -E (D

o .-. H a~ -r r-I S..

0. c 4W.1.) 1 341:

2 ~ c = -u

~~ 4)

~4-J
W

w Q)a)
0 r-44-

Z E W

DWW

w C

P4 412.2-

S..
-J 4.2

w S.-

W a)

-LJ -c -W '

Hr40.. S..

S.. 0
wU S..

.4. .

CLL

.741 1 1

LU

.4 E 4E
CH a.~ -H)

D. LU-J W\

0.
C)

al C

.4 0.)) C

CL CO CL L

LU CL

U4)

> S. E.
ci 0) (a4.

L. l0 Cl)

oi co- a.o 4
-- I 0- C.

- (0)

LL

69S.

.,Rm
'Xi~l -d

m.

10 Begin Program

20 Begin Plant

30 Begin Unit
T -d

40 Employee

< >
60 End Plant 1

70 End Program }

--A "Figure 18. Skeleton Program Structure (Step 2)

(from Warnier, 1974).

70

w' 4 -t

yield rather complex structures. In particular, if the data subsets

corresponding to the actions represented in the program can be made either

disjoint or wholly included, a tree structured design is produced; if not,

a complex alternative solution, which considers two data subsets simultan-

eously at all or some decision points, is required.

When data required for decisions are not available at the time of

input (as when a whole record group must be read before the appropriate

action can be determined) a mu~tiphase (or multi-pass) design is required.

In this case, intermediate data structures need to be designed (since

they are not apparent in the original problem statement). When these

structures are specified, each phase can be designed individually using

the above techniques. Warnier doesn't discuss the backtracking technique

advocated by Jackson. Warnier's "processing phases" approach, however,

appears to approach the same type of problem, in a very different manner,

as Jackson's backtracking technique.

During the specification of the program skeleton, Warnier makes no

suggestion that functional descriptions be assigned to the components of

the skeleton. The skeleton is to be nothing more than an empty flowchart

related directly (or indirectly through truth tables) to the data structure
(see Figure 18). Different kinds of boxes, according to the functional

class of instructions to be inserted later, are required in certain places.

But, for the most part, this design phase completely bypasses the heuristics

of functional coherence and module independence.

With the complete program structure in skeleton form, the next step

is to list operations for each part (see Figure 19). The parts of the

skeleton are given numbers, and the operations are listed with those num-

bers so that the association with the program skeleton is retained. A

list of instructions is formulated to map the input data into output. The

instructio - re not considered or written at this stage in the order in

which they wili be executed. They are considered according to the broad

functional classes into which they fall. Specifically, input instructions

71

t

10 - Read 1st Record
40 - Read another Record or EoF

40 - If iden. Unit = ident. Ref, Unit 40
50 - If ident. Plant = iden. Ref. Plant 30

60 - If EO"- 20

20 - Transfer Plant N* read to Ref

plant N'
30 - Transfer Unit N*.read to Ref

Unit N'

10 - Clear Grand Total
20 - Clear Plant Total
30 - Clear Unit Total
40 - Add Annual Emolu. to Unit total

50 - Add Unit total to Plant total

60 - Add Plant total to Grand total

20 - Edit Plant N'
30 - Edit Unit N'

40 - Edit Employee N*
40 - Output and restore Print line
50 - Edit Unit total
50 - Output and restore Print line

60 - Edit Plant total
60 - Output and restore Print line

70 - Edit Grane Total
70 - Output and restore print line

""!? Figure 19. List of Operations for Each Part of the Program Skeleton

(Step 3). (from Warnier, 1974).

72

MOWNss-

are considered first, branch instructions second, calculations third,

output instructions fourth, and subroutines last.

The next step is to sort the instructions into the proper parts

of the skeleton (see Figure 20). Within each distinct part of the pro-

gram, Warnier advises that instructions are generally performed in the

following order:

a. Preparation for branches

b. Calculations

c. Outputs

d. Inputs

e. Branches

Subroutines are classified according to their function to make this
assignment.

When the process of assigning instructions to parts of the program

skeleton is complete, a detailed flowchart for the program exists. The

instructions are in a pseudo code of niqh-level, functionally oriented

terms. The next step is to exhaustively follow the instructions throuah
the flow diagram and mentally observe the transformation of input to output.

This is the verification step. 1ýhen the instructions were listed, in the

previous step, they were listed because each was necessary to some aspect

of program requirements. This final verification step is to determine if

all the steps are sufficient and in the proper logical sequence.

In summary, the steps in LCP are:

a. Assess and define the data structures.

b. Compose the program skeleton based on the input data.

c. List the operations for each part of the structure. Consider

them not in order of execution, but according to category:

(1) Input, (2) Branch, (3) Calculations, (4) Output,

(5) Subroutines.

73

-4.-

10 - Clear Grand Total
Read 1st Record

20 - Transfer Plant N' to Ref Plant N°
Clear Plant total
Edit Plant N'

30 - Transfer Unit N" to Ref Unit N"
Clear Unit total
Edit Unit N'

40 - Add Annual Emol. to Unit total
Edit Employee N*
Output and restore print line
Read another record or
If ident. Unit = ident. Ref. Unit 40

50 - Add Unit total Plant total

Edit Unit Total
Output and restore print line
If ident. Plant = ident. ref. Plant 30

60 - Add Plant total to Grand Total
Edit Plant total
Output and Restore print line
If MF 20

70- Edit Grand Total

Output and Restore Print line

"Figu e ?1j. Sui.:,tvJ List of Ins-tructýions (Step 4)

- -roi, Warnier, 1974.)

74

d. Sort the operations into parts of the skeleton. Classify sub-

routines according to their function. Each component of the

skeleton will generally require the following sequence:

(1) Preparation for Branches, (2) Calculations, (3) Outputs,

(4) Inputs, (5) Branches.

e. Verify the design by checking the instruction sequence against

the skeleton, and the skeleton against the analyzed data

structures.

LCP produces a hand-verified program written in pseudo code.

Implementation of the design should be a very straightforward translation

of this code into an actual programming language. As in Jackson's approach,

data structure is a problem "given" and design begins with its specifica-

tion. Data structure design is not addressed. LCP is also not guided by

heuristics, but is a more disciplined step-by-step procedure. It, therefore,

does not address the general problem-solving aspects of design, but pro-

vides specific approaches for certain kinds of design problems. The tech-

nique is logically robust enough to handle design problems of considerable

complexity, but may very well be too cumbersome to be usable by designers

in such instances. This will be discussed in a later section. Problem

subsetting, module definition and interface description, and design on

different levels of detail are subjects not discussed in this methodology.

Much of Warnier's concern is with implementation efficiency and a

good deal of his procedural presentation is concerned with the use of

truth tables and related techniques purely for the purpose of program

optimization. Although the techniques advocated are quite adequate for

assuring that the optimized version of the design is functionally correct,

they are somewhat cumbersome and may yield designs not easily comprehensible.

As a casual observation, it is not clear why Warnier goes to the (sometimes

considerable) trouble of aeveloping detailed truth tables to descrvbe a

program's decision logic and ther. converts -hose tables to a rigid 1-nc

sometimes very complex) program s-ruc-ure. Pernaps -aole-.ri ,n ;pronrams

would be more appropricxe.

75

' A

ANALYSIS FROM A PROBLEM-SOLVING PERSPECTIVE

In a recent article, Peters and Tripp (1977) present a somewhat

pessimistic view of the state of the art of software design methodologies.

They criticize several design techniques for their limited applicability

and the unprovable assumptions upon which they are based. Readers famil-

iar with this literature may well concur,

V From a problem-solving persoective, it is not surprising that

existing software design methodologies are primitive. As was indicated

in the introduction, software design problems are often complex and per-

haps ill-structured. They are in the realm of artificial science, in

which the "correctness" of a solution is not necessarily an objective

issue. More to the poirt, though, the problem-solving behavior of soft-

ware designers is not well understood.

It may be useful to think of design methodologies as providing

problem-solving aids for the designer. In fact, much of the emphasis

of the surveyed design methodologies can be reldted directly to the re-

source limitations inherent in human problem solving (cf. Norman & Bobrow,

1975). Yet, as we hope to make clear, the methodologies barely scratch

the surface. Much more powerful aids may be possible, but their develop-

ment depends critically on a deeper understanding of the problem-solving

behavior involved.

The same comment applies to the development of "stronger" design

methods (in the strong vs. weak methods sense discussed in the introduc-

tion). It may or may not be possible or desirable to develop a catalogue

of strong (situation-specific) algorithms for software design. Certainly,

the fact that software design is an artificial science does not necessar-

ily preclude such methods (mathematics is an excellent counter example).

Again, it is our current understanding of software design, as a human

S problem-solving activity, which restricts our current efforts to tne

~~ development of weak, but general , methods.

76

-•,• • •,,•• ••,• •r•-"•'I I" -, I ! • "

In terms of their fundamental aoproaches to problem solving, the

surveyed methods fall into two broad classes. A discussion of the pro-
perties of each of these classes will be followed by a consideration of
some difficulties and errors to which the methods may be susceptible.

PROBLEM-REDUCTION APPROACHES

Several of the software design techniques considered in this review
are based on some type of problem-reduction heuristic. The underlying
intent is to decompose a larger problem into subproblems which are (hope-

fully) conceptually more manageable than the original problem. Decompo-
sition strategies of this sort are frequently employed by human problem
solvers when the initial problem is too complex to solve directly, but
it can be broken into relatively independent subproblems. Such strategies
are also common in artificial intelligence systemns designed to solve com-
plex problems.

Frequently, the key to success of a problem-reduction strategy is
the achievement of independence in the problem decomposition. If the
problem is decomposed into subproblems which are not independent, the
effective complexity of the problem solver's task may not be reduced. In
extreme cases, it may even increase. It is important to keep in mind that
the human problem solver has fairly severe resource limitations (especially,
short-term-memory limitations) within which to operate. When a problam-
reduction stategy is used on a complex problem, it is very unlikely that
the problem solver will be able to adequately recall and itilize the
global information required to deal with complex subproblem interdepen-
dencies. Much of the benefit achievable througn such strategies involves

the ability to concentrate on only one (sub)problem at a time, decompos-
ing it on the basis of local information.

With the exception of the methodologies of Jackson and 'Aarnier,

S. all of the formal methodologies and informal design techniques considered

here are explicitly concerned with a problem-reduction strategy. The basic

"77

7. -Ai Af 0"'.

IIft2

problem is decomposed into subproblems, which are in turn decomposed

into their subproblems, etc. The problem-reduction process is very

apparent, since each problem is ordinarily expressed in terms cf the

function of a software module. Each module is then decomposed into

a set of component functions, which become modules at the next lower

level, until the design has been developed to the desired level of

detail.

The cautious reader may have noticed that the concept of plan-

ning by levels of abstraction (as discussed by Ledgard, for example)

does not strictly imply a correspondence betweer problem-reduction

steps and software modular structure. However, even this approach,

as actually practiced, relies primarily on modular decomposition. In

practice, modules correspond to the (sub)problems to which problem-

reduction operators are applied.

The problem-reduction process typically involves both problem-

reduction operators (i.e., methods or guidelines for decomposing a

problem into subproblems) and evaluation functions (i.e., techniques

for evaluating the resulting decomposition). Structured design, for

example, uses a data-flow analysis, followed by either transform or

transaction analysis, to suggest useful modular decompositions. The

quality of the resulting decomposition is evaluated in terms of modular

independence, functional coherence, etc. Figure 21 summarizes the

problem-reduction operators and evaluation functions advocated in Struc-

tured Design, ISDS/HOS, and in the several structured-design-related

informal techniques which were surveyed.

Clearly, the problem-reduction heuristics of structured design

are more explicit, more detailed, and more procedural than those of

the other problem-reduction approaches. In the other approaches, the

designer is given very general, highly subjective problem-reduction

heuristics (Parnas' "information hiding"), or is given no guidance at

all. This should be considered as a comment on the relative maturity

78

0*

U ICJ10 ' w Uuu a)I jil HIID 4- Itii -. Ii a
"a o .0 .- r_ 0 0. v- .-)u-.•. • 0 E 0 *.-S..0 • > 0 4. *. -- >, 0 (a " "C'S " "C "- -.- " L (0.v

.-i = "a - V) 4J -1,. F. -0 S- . to .0 (z L'- . - o. ',' c 4' - = " W ,,

1 mo= - ,---
a) ' 0 _.rQ0 0-- a) 4 4 0 -- 0 c

S4 0 u = (4-. U - =-" a - '=-- = V) (41
0 a 0 4 e-) 0. Ua M 0 4-, C0 0(>- O) V))0

- -- uS 0 a- 0 . L u 0 0. w " 0.. w w "-u).
4-0 (v u S-..I- c 4 -' Cl- S- 0 0N 1 U .-- =• -4'-) S C

C a) S-=m - m.0. S- EC $- s),S--. C3. = M" 4-S
a 1) eaoj 0. ., 0 L -i- 0 mW 0 04- 0 ,- 4-- X0 * = (1)

04- M • 4- C CZ u'-m 0 O c 0+- u - 0 W 4-
+ (L• . •" r 0 " C .

4 0.1. M4 4-).

W Q)a) 4"C:

0 --eaJ • 0 .-C ',.) 0 *0-' V) - 0 M
V * -- u 0 (V 4J Q*..• 04

u u V) .0 4- Uo-4-S- -- " • U"- * 0-W._

o X01 01 (4'01 c0a1'- 4-) -O0 CW e U O0 1

S 0 C S, 0 S.. 04 0 0 4-J M V) ")

.- -. 4-, CL .) 4- - 0 S.- a0 a• u' 4- "cu•

U- 4-U C. 0 UC: 4J 4-• C- • 010 0-

WU 0 u• 0 =U 4- (- r--.. S--• . -_.

oL L -0In L. m 0 1 a)- C ~ 0.U~*0 (1 OWNO'a) 4J(

a) S-- rJ.- r-- u -.(ca)m V).u. V') u (DJ

4-C • L-"- 4-3 0 C .' c c L) 4 0 1 •.,-- -

ea,• u• u -0 "-. - ý U- uC

CL CL .- ") m ..-a4-'W 44
ro SU0 - E C01 4n C4-'

o. -w CC 0) *-W m S 0 IA)
4-. WIU e- E .C4'0 L
to OC 3: r_ (U tC V c

0 -U 0c- 1 0 00- 00
0 s-c 0 .- 5-C1nU0Un C0

CL d)(Z4- a . c -P-01~ 5 1w1S- 01
4.' = - 0.- 00C- a'

0 (n a - o U u1 E40~ O U M 4- L
Q 01 4-' 01 C0 ' ~ 4- J 00S..- 00

- m >40 -0 w4 wamE0
0143 4-l5 M OO SO 0 a r_0S

01 C) 01j 4-- a -S.-. o) u 'ts
43 4- W.C .o (r C - '0 4-) a) 0 S- 4-' i

-) .4.'' - 0 0- 4- 4-' .0 *-4'-
- U 01_ Ui 1.) 50 4-5- Ua)r1

.a *l rfl EO. a. 4-O-I
4 -) M -. 4-3 S -'- 4-ý 0

Q. o. r_ 01 0a .- U4-- O
0..~S S-14' a)~ X41 ' 4- S-' C u 4J 4)0

0 1 I, 4-J 01 C0 -04'4--' W- (0.
X --01r- 4J- 4J aif-S-(-=XS-a r-~0.

4
J4--) 4-) 04'4- O 4'

0 0' (a C 0 WC.- 0\ 000a)-4-

j44
0- C-aS

CL V 1)4'5.1)
Cor- di o - 0 1S t

-j ci .- S-4-) C

79

of those approaches, rather than a criticism of their fundamental

principles. It is likely, though, that fairly explicit problem-

reduction heuristics will be required if a problem-reduction-type

design methodology is to be applied with any rigor or consistency.

Without such guidance, the approach may affect the designer's atti-

tudes about the design task, but have little direct effect on problem-

solving performance.

Even ISDS/HOS offers little explicit guidance in this area.

Although this methodology provides a very explicit set of "decomposition

rules", those rules act primarily as formal constraints on the decomposi-

tion, rather than as aids to the selection of a useful decomposition.

To express it another"way, the application of the decomposition rules

is straightforward, once the function of a module has been expressed in

terms of subfunctions which are related by sequence, set partition, and

class partition logic. But that reexpression of a module's function in

terms of an appropriate partitioning into subfunctions is the crux of the

problem, and ISDS/HOS offers little help here. On the other hand,.there

appears to be no basic imcompatibility which would prevent the ISOS/HOS

designer from employing problem-reduction operators derived from the

other methodologies.

The evaluation functions of these various methods, when they are

explicitly present, are primarily concerned with ensuring modular inde-

pendence. Again, the most detailed set of evaluation functions is found

in the discussion of structured design. In some cases ("Information

Hiding", ISOS/HOS), a degree of modular independence is an implicit pro-

duct of the problem-reduction operator or of formal constraints on pro-

blem-reduction moves. Where explicit evaluation functions are present

(e.g., structured design), the more important ones (e.g., coupling,

functional coherence) are highly subjective in nature, and perhaps

difficult to apply. Although ISDS/HOS may be difficult to use for other

reasons, it is almost certainly the most effective of these methods :or

£ achieving low coupling and high functional coherence.

80

Considered as a group, the problem-reduction approaches are weak

methods, broadly applicable but not extremely powerful. They involve

problem-reduction operators and evaluation functions which are relative-

ly simple and which have considerable face validity as mechanisms for

ensuring that the problem is partitioned into relatively independent sub-

problems. As will be seen later, this appearance of independence can be

misleading. Even the most extensively developed of these methodologies

involves problem-reduction operators and evaluation functions which are

heuristic and, in fact, highly subjective in application. This is good

in some respects, and bad in others. It is desirable because it allows

the methodologies to be useable on a broad range of problems by a broad

range of designers, without interfering markedly with the designer's use

of task-domain knowledge and personal design techniques. It is undesiraole

because success depends heavily on the skill and experience of the designer

to find useful problem decompositions and to recognize situations of high

subproblem interdependence.

ALGORITHMIC APPROACHES

The second group of design methodologies consists of the approaches

of Jackson and Warnier. These approaches differ from the first group in

several ways, and it is difficult to decide which of these differences is

the most basic.

Each of these methodologies starts with a formal specification of

input and output data structures. A (basically mechanical) procedure is

then employed to map these data structures into a corresponding modular

structure. In the case of Warnier's approach, further algorithmic proce-

dures lead to the development and sorting of individual program statements.

In a sense, these methodologies, too, involve problem-reduction

operators. It is important to recognize, though, that the problem decom-

position process is assumed to be a mechanical, algorithmic procedure
•,. .and, unlike the problem-reduction approaches, is applied prior to, rather

•K,. than concurrently with, the development of a modular structure. The

S I

problem reduction is specifically not done on the basis of the designer's

problem-related knowledge or skill. Evaluation functions, in the sense

discussed in the previous zection, do not exist in these methodologies.

Clearly, though, a basic intent of the mechanical procedures employed in

these approaches is the assurance of an appropriate level of independence

among system and program components.

Bcth of these approaches start with specifications of the input

and output data structures. These specifications are expressed in the

form of hierarchic structures with mandatory and/or optional elements,

which may be iterative. Neither author explicitly indicates how this

data structure specification should be done, or %.hat difficulties might

be encountered in the process of describing data structures in this way.

In many application areas (e.g., business report generation), data

structures seem naturally to take this form, and the task is probably

fairly simple. In other, or more complex, situations, it may not be

simple. In particular, the designer may have difficulty adopting this

particular representation of the problem, even though it probably has

enough logical power to handle a wide variety of design problems (see

the next section for a more detailed discussion of this issue). Informal

reports on the use of these methodologies (e.g., Peters & Tripp, 1977)

suggest that this difficulty does occur in practice.

Once the data structure specification exists, Jackson's approach

maps that data structure directly into a corresponding modular structure.

If the input and output data structures correspond, this mapping is one-

to-one; otherwise, a "structure clash" exists. The technique for handling

this situation ("program inversion") is heuristic in nature, but appears

sound and relatively straightforward in noncomplex situations. It is not

apparent that program inversion would become significantly more difficult

in complex design situations, but that is a possibility which should be

kept in mind.

The remaining technique in Jackson's repertory is "backtracking,"

which is a technique for handling what might be called a "temporal clash,"

82

•' ____ ___

in which the system must either make a (reversible) decision based on

incomplete information or defer the decision until more information is

"obtained. This problem is particularly significant to Jackson because

the one-to-ora correspondence of modular structure (and thus control

structure) with the data structure is difficult to maintain when this

situation occurs. Jackson's solution is a "commit now, then ouit and

recover if necessary" approach. This approach may be satisfactory in some

cases, but clearly cannot be universally applicable. It is possible to

devise cases which make such recovery arbitrarily difficult. In any

event, "backtracking" often results in unnecessarily high module coupling,

.Ahich may complicate not only the design task, but virtually all later stages

of software development. It seems likely that the multiphase technique

of Warnier, or some similar deferred-commitment approach, is more

universally applicable.

Once these techniques have been employed to develop a modular

structure, the design task is more or less completed. The detailed design

of the individual modules is a programming task not formally addressed by

Jackson. In terms of level of detail, then, Jackson's approach corresponds

to that of the structured design methods.

Warnier's methodology is even more algorithmic and extends through

the development of actual code. Again: the starting point is a hierarchic

specification of the input and output data structures. The designer must

then specify, via formal boolean equations, the logical relationship of

the output data elements to the input data elements. From this point on,

the process is entirely algorithmic. The designer uses truth tables or

some similar means of simplifying the boolean equations, and uses mapping

rules, sorts, etc., to generate the p-ogram.

It is evident that both Jackson and Warnier are attempting to

provide objective methods for software design. In the process, though,

they (especially Warnier) have developed approaches in which the designer

executes very mechanical procedures. This may be a source of considerable

difficulty.

83

Greeno distinguishes between "formal" and "informal" reasoning, where

formal reasoning involves the use of syntactic information, formal languages,
relatively mechanical procedures, etc., while informal reasoning involves
semantic models. The reasoning processes involved may differ considerably
between these two classes of problem-solving behavior. Larkin (1977) has

presented data which suggest that very experienced physicists may adopt a

predominately semantic (informal) approach to the solution of physics

problems, whereas relatively inexperienced physics students proceed
immediately to the use and solution of mathematical equations, and thus
employ formal reasoning. Presumably, approaching the problem with infor-

mal reasoning would allow the problem solver to make much greater use of
his knowledge of the problem domain, experience with conceptually related
problems, etc.

The very formal, syntactic approach of Warniet (and, to a lesser
extent, of Jackson) may very well deprive the designer of the ability to

use problem-relevant knowledge to resolve difficulties which arise in the
design. Of course, if no difficulties arise, this may not be an issue.

At the risk of overgeneralizing, though, it would seem that in the design
of very large, complex systems, difficulties always arise. If, at this

point, the design is sufficiently different from the designer's internal
representation of the problem, and the design process has relied heavily

cn formal, syntactic reasoning or even mechanical procedures, the designer
will be in trouble. Under these circumstances, one might speculate that

corrections to the design will necessarily take the form of "patches,"

based on local knowledge and on reasoning at a fairly syntactic level.

If the speculations of the two previous paragraphs aYe correct,
then the methods of Warnier and Jackson are probably limited to problems
of moderate complexity even if the underlying design procedures are

basically sound and the specification of data structures in the required
hierarchic form is a manageable task. Of course, these latter assump-

tions must also be satisfied, but we have no present basis for determin-

ing whether, or in what situations, they are satisfied.

84

We have suggested that these "algorithmic" methodologies may be

limited with respect to problem domain and problem complexity, and that
they may limit the advantageous use of relevant knowledge by the expe-
rienced designer. On the other hand, such methodologies may be quite
advantageous if used by inexperienced designers for appropriate problems.

The difficulty is that we have no present basis for determining the appro-
priate problem domain. It might also be true that inexperienced designers
do not become "experienced" designers, in the sense used abjve, by employing

such methods.

EFFECTS OF DESIGN TECHNIQUES ON PROBLEM REPRESENTATION

If satisfactory problem-solving performance is to be achieved, it
is necessary that the problem solver be able to form an appropriate repre-
sentation of the problem. While forming an appropriate representation can
aid in problem solving, it is also known that, in some problem-solving
domains, the formation of an inappropriate representation can prevent a
solution from being achieved. As used here, "problem representation;"
refers not merely to formal notation, but encompasses more specifically
the designer's perception of the logical structure of the problem, legal
alternatives, etc.

In order to illustrate this issue, consider for example the prob-
lem discussed by Wertheimer (1945) of finding the area of a parallelo-
gram (see Figure 22a). To solve this problem, it is necessary to drop
perpendicular lines from the upper right and left corners and extend
the base line (in this case) to the right (see Figure 22b).

In a classroom setting, Wertheimer noted that students developed
one of two problem representations. The first involved recognizing that

the problem requires proof of the congruence of triangles aed and bfc.
"The rother representation is exactly as stated above: "drop perpendicular
lines", etc. This second type of representation is, of course, inappro-

priate for parallelograms of the form shown in Figure 22c.

85

-4-1-

I;

F
S..
0I

U 0
I-.

w

S..

0

U 4- w
- - 5..

*

*.0

01
C

*1��

'-S 'U

U
U-

c�J
C�J

'U

S..

U *1�La..

537
36

V

-��;-- -. - -
� �

The first type of representation can be characterized as

"logical," "intuitive," or "global" while the second can be charac-

terized as "mechanical" or "algorithmic". Duncker (1945) extended

this aspect of problem solving by demonstrating that a particular

problem representation is closely related to the manner in which a.

solution is attempted ("functional fixity"). Maier (1930) experi-

mented with techniques for causing subjects to adopt more appropri-

ate representations ("direction"). Paige and Simon (1966) demon-

strate that subjects who adopt highly algorithmic problem representa-

tions will apply algorithmic methods, with great persistence, on

problems that have no solution (i.e., nonsense problems that do not

represent possible events). In various contexts, problem representa-

tion has been shown to affect the nature and success of solution

attempts (Hayes & Simon, 1974) and the type and number of errors

made during problem solving (Jeffries et al, 1977-).

With the exception of ISDS/HOS, the problem-reduction techniques

do not generally appear to impose significant constraints on problem

representation, nor do they give significant guidance in the choice of

a representation. They impose no obvious constraints which affect the

designer's choice of data structure types, nor do they contain strong

constrainLs on the modular structure or the designer's (largely experi-

ential) criteria for modular decomposition. They do, of course, impose

constraints on the modular decomposition procedure, but that is a matter

of problem-solving method, rather than problem representation, and it has

already been discussed.

S~ISDS/HOS does appear to constrain the problem representation, to

a degree which may be mild or quite significant, depending on the design
problem, the designer's facility with the AXES specification language,

and the guidance given the designer, by ISDS, during the modular decom-

position process. Clearly, the axioms and decomposition rules also

impose some constraints (and give some guidance) with respect to the

y., modular structure and decomposition alternatives, but AXES, and the

interaction with ISOS, are probably even more constraining. These

87

constraints are, of course, helpful in simplifying the interface be-

tween the designer and a system of automated aids. Furthermore, the

restrictions on problem representation may not hinder the designer if they
match his "native" apprc:.ch to design and are appropriate to the problem.

If they do not, however, the constraints may significantly hinder perfor-

mance. Unfortunately, our understanding of software design as a problem-

solving task and of the relevant variables of the task domain is presently

insufficient to allow us to predict the circumstances under which these

constraints might have deleterious effects. And once again, if the task
properties and'the designer's experience and predelictions are closely

compatible with the constraints, these constraints may even be actively

beneficial to problem solving.

The methodologies which most clearly restrict the designer's prcblem

representation are those of Jackson and Warnier.- These approaches require

that the designer adopt a particular kind of hierarchic data structure, and

that he represent all problem-re evant information in terms of those struc-

tures and their relationships. As noted earlier, there may be situations

in which this is quite easy, but there are probably also situations in which

it is not a viable representation for use by the human problem solve'r. Both

of these authors beg the question of the difficulty of this task, but it is

probably the most important determinant of the viability of Jackson's basic

method, and one of several significant factors in the viability of

Warnier's approach.

Of particular relevance is Ourding, Becker, and Gould's (1977) study

of the ability of human problem solvers to utilize a variety of data struc-

ture types. Although the subjects were able to use a Variety of data

structures (e.g., hierarchic, list, network structures) when appropriate,

they had considerable difficulty expressing information with a data st-uc-

ture type which did not inherently match the logical structure of the data.
While it can be objected that these subjects were naive with respect to

data structure use, and that the stimulus materials were perhaps somewhat

leading, the study clearly suggests a possible limitation of these data-

structure-constrained methodologies. This limitation is psychological,

and is not eliminated by Jackson's demonstration that hierarchic structures

are logically adequate for a wide variety of situations.

88

W, k-RRM

PREVENTION AND DETECTION OF DESIGN ERRORS

-J

The prevention, or subsequent detection, of software design errors

is a topic of considerable importance which receives limited explicit

attention in the surveyed design methodologies. Undoubtedly, many design

errors are eliminatid by the use of any systematic approach, while others

may be implicitly prevented by particular methodologies. One has the imn-

pression, nonetheless, that the designer is mostly "left to his own devices,"

where error prevention and correction is concerned.

Clearly, our ability to devise heuristics or procedures for the

prevention or detection of design errors depends on the nature of those

errors, and on our understanding of error classes. In particular, there

will probably always be errors which are so specific to one application

area that they elude corrective measures compatible with general.-purpose

(weak) design methods. And yet, it seems possible that an analysis of

design error classes, based on our understanding of human problem-solving

behavior, would yield information useful for the development of general-

purpose preventive measures for a significant proportion of design errors.

Consider, for example, the design shown in Figure 3a of the

Introductory section of this paper. This design represents a partial

solution to the problem described in Figure 2. The designer might actually

decompose each of the indicated modules to several additional levels before

considering the design completed. Superficially, the initial design step

shown in Figure 3a seems entirely reasonable, and is probably the most

common first step taken in this problem, particularly as the problem is

worded. Yet it contains a design commitment which is wrong, or at least

very troublesome, aid which may easily go undetected and uncorrected all

the way through implementation. This particular example is from a study we

are now conducting. It was generated by a very capable and fairly expe-

"rienced software designer whose background included significant exoosure

to text processing. The error in question was never detected by this

designer, and was allowed to remain in the finished design.

39

MI

To understand the nature of the problem, it will ba necessary for

the reader to reacquaint himselfwith the design problem described in

Figure 1, Now imagine, if you will, a situation in which one page ends

in the word "Civil", while the next page begins with the word "War".

Suppose, further, that one of the index terms for the book is "Civil War".

If the text is truly processed a page at a time, as the design suggests,

no index entry will be generated in this case, because the phrase in ques-

tion crosses a page boundary.

Admittedly, this problem can be corrected by provisions, at lower

levels of the design, for storage of a partial phrase in a buffer, so that

processing is really done almost a page at a time. This "patch" is an

inferior solution, however, since i6: (1) increases coupling among modules,

(2) causes the design to contair a module ("Process Page") which does not

perform the function that most people would infer from its name, and (3)

may result in unnecessary additional data storage and data management

activities. A better solution is a design which recognizes from the start

that processing is done a word at a time, rather than a page at a time.

In such a design, there might be a "Get Next Word" module, which calls its

submodule, "Read Page", when necessary.

The real point of this example, though, concerns not the ease or

difficulty with which the error can be corrected, but the high prooability

that it will not be detected at all. We have speculated that the designer

employing a problem-reduction strategy is forced, by his own memory resource

limitations, to perform problem-reduction operations primarily on the basis

of local information. Alchough there are many variables involved here,

this speculation appears, in general, to be highly defensible. If that is

"true, and if the designer has not already recognized this problem at the

time the first design step (Figure 2a) was taken, then there is a small,

and perhaps decreasing probability of detection of the error as the de-

signer attends to lower levels of the design.

90

Af 4;". 0

From a problem-solving viewpoint, this error has very interesting
properties, This kind of error can be made very early, and high, in thle

design, and yet be detectable only if the designer is attending to fairly

global information when he is working at a very low level in the design.

In this kind of situation, it would seem that a problem-reduction approach

leads the designer "down the garden path," so to speak. Errors of this

sort are potentially very serious, and are probably quite common. An error

similar to our example was discussed by Henderson and Snowdon C1972) and

Ledgard (1973), and similar situations have been treated, though not as

errors, by Jackson (1975).

There appear to be three broad approaches available to us if we

wish to devise design procedures or aids capable of preventing or correcting

such errors during the design phase. These three approaches will be dis-

cussed in turn. First, we might attempt to provide some sort of assistance

which would aid the designer in making use of global information while he

is working lower in the design. This approach might involve some sort of

automated aid capable of extracting relevant global information from higher-

level design steps and presenting it to the designer as he works at lower

levels. It is not at all clear how this might be done and it does not pro-

mote early detection of the problem, but the possibility is mentioned here

in the interest of completeness.

A second approach involves the development of better mechanisms for

recognizing the error after the design step in which it occurred, but be-

fore more detailed design work is done. These mechanisms might assume any

of several automated or manual forms. The automated aids of ISDS/HOS are

one example, although it is not clear that they would assist wizh the ae-

tection of basically conceptual errors, such as that of our exa,'iple. Thc,

are intended more to ensure that only ailowdole design moves die qaue (.1

defined by the axioms dna decomposition ruids), and tnait tan ,cr Gas

modules have compatible interfaces ,vith one another and with .he oaza

structures.

91

............ * ~

Another kind of automated aid, which may be more relevant here, is

suggested by the "critics" used in Sacerdotiks (1975) Nets of Action

Hierarchies rNOAH) System. NOAH is an "ar'tificial intelligence" system

which solves problems via a hierarchic problem-reduction approach similar

to that which appears to be most common in software design. However, NOAH

also employs a set of automated procedures, called "critics," which clean

up the solution plan, resolve inconsistencies, etc., after each level of

the plan is developed. The particular critics built into NOAH are very

,neral-purpose ones, and clearly could not detect an error such as that

J• he example. The concept of critics is interesting, however, and it

is conceivable that a library of softwere-design-related critics could be

constructed in connection with an automated design aiding system such as

ISDS/HOS.

As suggested earlier, it is also possible that improved manual

procedures for the designer, and possibly improved design review and

walkthrough techniques, could be used to detect an error of this sort

before more detailed design is dor.,. This particular error is one which

might very well be detected by a structured design review before other

experienced designers, conducted after only the one design step has been

done. This is not the way in which design reviews are ordinarily done, but

waiting until several design levels have been developed may tend to cause

the reviewers, too, to attend to relatively local information. In this

event, they might fail to detect the error even though the review group

contains personnel experienced with the class of error involved.

The third basic approach, and the one which appears most promising

to us, involves the development of heuristics, or even algorithmic proce-

dures, which are applied before a design step. These procedures are in-

tended to detect the error-prone situation and prevent the erroneous

design step from being taken in the first place. This may strike the

reader as overly ambitious. However, one, and perhaps two, heuriftics

92

4 .4

already exist which might have prevented this particular error -- and,

perhaps, a wide variety of errors of the same general sort.

The astute reader may have been aware, all along, that the partic-

ular error, which we have used as an example, is an instance of the "struc-

ture clash':described by Jackson (1975). The structure clash is i situa-

tion in which the basic unit of input information is different from the

basic unit of output information, and neither is a proper subset of the

other. In the example, input is read in pages, "output" is io phrases,

and only the smaller unit, the word, is common to the two. Jackson resolves

this difficulty by "program inversion," in which communication is done in
units which might be thought of as the smallest common divi or -- in this

case, words.

The important contribution made by Jackson, though, is not program

inversion, although that appears to be a sound treatment of the structure

clash, once it has been identified. The important contribution is his

description of a procedure for detecting the situation itself. Because

Jackson's methodology contains a procedure for detecting the structure

ciash, it ceases to be a hidden error-prone situation and becomes, instead,

a known property of the design problem -- before the erroneous design

commitment is made.

Although the heuristic for recognizing structure clashes arises

rather naturally from Jackson's basic approach, its use is by no means

restricted to designers who are using that approach. Furthermore, once

this particular class of error has been recognized as a class, other heu-

ristics also suggest themselves. For example, an extension of the data flow

analysis used in structured design could probably be used to detect this

* -same situation.

A9

~u93

Na

, - t

The important prerequisite to the systematic development of heu-

ristics or algorithms for detecting error-prone design situations is the

development of a taxonomy of error classes, from a human problem-solving

perspective. Previous analyses of software development errors have typi-

cally broken them down only into such categories as "conceptual," "clerical",

etc. Given the perspective suggested above, though, it may be possible to

categorize observed design errors not only according to their surface fea-
tures, but also in terms of the processes which led to them, and their

implications for later problem-solving steps.

SUMMARY

Figure 23 provides a very brief summary of some of the factors which

might affect the utility of the various formal methodologies. Tables of

this sort are necessarily oversimplified, and this table should be inter-

preted in the context of the lengthier expldnations already given. For the
reader who has read the previo:s discussion, this table may serve as an aid

-k to simultaneous consideration of the four methodologies in terms of the prin-

cipal human factors problems whic! were identified. The brief summary

* statements given below should also assist this integration.

Structured Design

Structured Design is the weakest, most broadly applicable design
methodology of the four, It appears to be compatible with design problems

of any size from large systems to individual programs. It is a problem-

reduction approach which ordinarily proceeds top-down, but the approach

could be used with other design strategies Ce.g., middle-out). By a con-
siderable margin, Structurea Design is the least constraining of the four

methodologies. The desigtner is free to adopt the most meaningful repre-
sentation of the probien, and tc. make modular decomposition and other deci-

sions on the basis of the designer's knowledge and experience. In fact,
it depends heavily on that knowledge and experience. Structured Design

94

IM...- -"!
S. -•"" • •.''• • • • i I ar • l" 'i -i • '1 I IIA

Structured Jackson's Warnier's
Design ISOS/HOS Methodology Methodology

General Nature Problem- 7op-down Algoritthmic Algorithmic
reauction 3roblem-

reduction

Basis for Modu- Data flow Oata flow Data struc- Data struc-
o lar Oecomposi- ture ture
I-' tion

"Primary Oocu- Oata flow Algebraic Structure Specialized
mentation "bubble notation, cnart with structure
Methods chart", AXES de- iteration, diagrams,

Structure sign lang- selection Boolean
chart uage operators statements,

Program
design lang-
uage

Size of prob- System, System Simple sys- Very s.mple
lem to which program tem, pro- system, pro-
method anpears gram gram
applicable

Degree to which Low Moderate digh Very nigh
method con-
strains de-
signer's re-
presentation
of problem

Conduciveness High High Somewhat Very lowv
to aoplication low
of designer's
knowledge and
experience _

Required level Low High Low Moderate
of theoretical

C sophistication
4 of designer

Method is driv- Yes Yes No No
> en by basic

processing re-
quirements of
system

Assistance is Yes No, but No 1lo
provided for Structured
required dat' Design
flow or data aporoach
structure compatible
analysis

Susceptibility Susceptible to design Possibly susceptible to mis-
to design errors errors due to subproblem match of design and require-

interaction since design- nents, since method is not
er is forced to attend directly driven by proces-
to local information when sing requirements.
dealing with low-level
suboroblems.

Final product Varies Yaries Somewnat fes
of design effort
is close to.
actual code in I
level of detail _ I

Figure 23. A Somewhat Speculative Evaluation Summary

of Formal Design Methodologies

95 5

r,_-_t 77 -. 7-~~

provides a framework within which the designer can more readily recog-

nize the design decisions to be made, and it helps in the evaluation

of certain aspects of the resulting design, but the basic decisions

are made by the designer, not by the method.

Structured design is clearly susceptible to design errors in

those situations in which modules are nonindependent, but in which their

lack of independence cannot be recognized on the basis of the local in-

formation considered at any single decision point in the design process.

This is the "garden path" type of error discussed earlier in this sec-

tion. In at least one major instance (the "structure clash"), procedures

exist (or could be developed) which would aid the designer's recognition

of the problem. Incorporation of such an algorithm into the methodology

might be desirable.

ISDS/HOS

ISDS/HOS is also a weak, broadly applicable methodology which pro-

vides procedural and evaluative aids, but gives little guidance with re-

spect to the content of the design decisions. The designer is constrained

to a particular approach to modular decomposition which may work very well

if it matches the properties of the problem and the style of the designer.

Otherwise, these constraints, which are rigidly enforced by software aids,

may degrade design performance. The AXES specification language (and, to

a much lesser degree, the HOS model itself), appears to require a designer

who is theoretically sophisticated -- in such areas as language theory,

for example. For all but the most fluent users, it appears likely that

the information processing load imposed on the designer by the use of the

ISDS system is significant, and would probably impair performance on com-

plex design problems. Only empirical study would determine whether

such impairment offsets the benefits of ISDS/HOS, which include the

development of designs with very high modular independence and coherence.

ISDS/HOS is also susceptible to "garden path" errors, and com-
patible with possible algorithms for detection of at least some such errors.

96

"The method appear¶ to be applicable to large systems design, but

it is probably inappropriate (or at least too cumbersome) for

lower-level design problems (small systems or programs).

Jackson's Methodology

Jackson's methodology is a stronger, algorithmic approach,

which relieves the designer of many modular decomposition decisions.

The method is applicable at the program level and to simple systems,

but probably becomes unworkable for very complex systems. It is also

clear that the approach is not applicable to all types of design

problems, but our understanding of problem types is inadequate to

allow us to characterize the scope of the method.

Because of its algorithmic nature, Jackson.'s approach appears

to have less dependence on the designer's knowledge and experience

than do the problem-reduction methods. To some extent, this is

illusory, since important design decisions must be made in devising

the data structure which is the input for the method. Furthermore,

the methodology dictates most modular decomposition decisions, but

the responsibility for satisfying the processing requirements still

rests primarily with the designer, and only loose guidance is given

for this task.

The data structure constraints imposed by this method represent

fairly heavy constraints on the designer's representation of the design

problem. Only empirical study can determine the circumstances under

which this results in unacceptable performance degradation.

Warnier's "Logical Construction of Programs"

LCP is an extraordinarily algorithmic approach to software design.

LCP begins with a definition of data structures and relationships, and

proceeds, by an almost purely algorithmic process, to develop a low-level

desion. The approach is probably restricted to program~s and very •Ample

97

ME C V~gft

- \Z ,

A 1 I

systems, and is probably highly restricted in terms of problem type,

but the precise nature of the latter restriction is unclear. For
such problems as report generation, the approach may be highly satis-

factory.

Like Jackson's method, Warnier's approach moves some of the
design decision making into the data structure specification, and

provides no assistance with this task. An even more difficult task

is the detailed specification of data structure relationships, and

no assistance is given here, either. It appears likely that the

strong constraints on problem representation, and the highly "syn-

tactic" mode of problem solving will interfere with a designer's abil-

ity to utilize knowledge and experience to advantage. Furthermore,

the resulting design may diverge significantly from the designer's

conceptualization of the problem. A likely result of such divergence

is a tendency to "patch" complex designs when requirements change or
design difficulties are encountered. Once again, though, only empirical

study can really determine the significance of these problems.

CONCLUSIONS AND RECOMMENDATIONS

We have attempted to present a systematic and critical analysis

of current and emerging software design methodologies from a human

factors perspective. We have not provided an exhaustive coverage of

all software design techniques and methods, but rather have focused

on those techniques and methods that are in widespread use and that

appear to have potentially significant effects on the software design

process.

This review effort was originally intended to satisfy several

goals:

1. Enumerate the relative strengths and weaknesses of

each consideredctechnique

. .98

P-ý-; A:i

2. Identify commonalities and differences

3. Critically analyze human factors problem areas

4. Make specific recommendations for improvements in

design techniques
5. Formulate hypotheses for the empirical analysis of

software design techniques

We believe that goals 1 and 2 have been accomplished. We have

attempted to satisfy goal 3, to the degree allowed by our currently

limited understanding of software design as a human problem-solving task.
In several cases, we feel that we have identified the most important

human factors problem areas, but were unable to provide any clear resolu-

tion of the problems without rurther research.

With respect to goal 4, we had hoped to be-able to make fairly

specific recommendations concerning the use of the various design method-

ologies. In several cases, it is clear that particular design techniques
must be restricted with respect to design problem type, complexity, designer

experience, etc., but we lack sufficient information to identify the actual

boundaries of the design problem domain to which they are applicable. As

a result, concrete recommendations of-this sort are not yet justifiable.

A number of suggestions, of a more minor nature, were discussed earlier

in this report, and were summarized in the previous subsection.

An even more ambitious undertaking would be the synthesis of a

more powerful system of design techniques, based on the techniques used

in existing methodologies and the new ideas which have emerged, and

will emerge, from a consideration of the problem-solving aspects of soft-

ware design. As a long-term goal, this undertaking appears both attrac-

tive and feasible. To have any serious hope of success, though, such an

effort must be preceded by a program of research intended to improve our

understanding of the software design problem domain, the problem-solving

processes used by software designers, and the kinds of errors made through

the application of these processes.

99
... '.g9

• ,-•

It should be clear, then, that there are some fairly fundamental

gaps in our knowledge of the behavioral aspects of software design.
Goal 5 of the projbct was the identification of research areas and

hypotheses which might help to fill these gaps. We have identified

16 topics which might usefully be addressed by a long-term empirical
research program on the behavioral aspects of software design and design
methodologies. These topics are discussed in detail in Appendix A.

Of these topics, the following appear to be appropriate for immediate

pursuit:

"Propositional" analysis of software design information

Taxonomy of the software design problem domain

Taxomony of software design errors

Analysis of the effects of ISDS/HOS problem representation
constraints

Analysis of the effects of Jackson-Warnier problem repre-
sentation constraints

Analysis of the effects of design documentation medium on
design performance

The reader is referred to Appendix A for a more detailed treatment

of these topics. The six listed above appear to be addressable now,
while some of the other goals (e.g., synthesis of an improved system of

design techniques) depend on information not now available about designer
behavior. Thus, the six recommended research efforts are those which

appear tractible, are worthwhile, and do not have other research efforts

as their logical predecessors.

If anything is clear from this survey, it is that there is consid-

erable room for improvement, both in design methods and in our under-

standing of design behavior.

I lO

100

MIS F, rRM

REFERENCES

Atwood, M. E., & Ramsey, H. R. Cognitive structures in the compre-
hension and memory of computer programs: An investigation of
computer orogram debugging (ARI Technical Report No. TR-78-A21).
Alexandria, Virginia: U. S. Army Research Institute for the
Behavioral and Social Sciences, August 1978.

Atwood, M. E., Turner, A. A., Ramsey, H. R., & Hooper, J. N. An explora-

tory study of the cognitive structures underlying the comprehension
of software design problems (Technical Report 392). Alexandria,
Virginia: U. S. Army Research Institute for the Behavioral
and Social Sciences, July 1979.

Bazjanac, V. The promises and the disappointments of computer-aided
design. In N. Negroponte (Ed.), Reflections on computer aids to
design and architecture. New York: Petrocelli/Charter, 1975,
17-26.

Bell, T. E., Bixler, D. C., & Dyer, M. E. An extendable approach to
computer-aided software requirements engineering. In P. Freeman,
& A. 1. Wasserman (Eds.), Tutorial on software design techniques
(2nd Ed.). Long Beach, California: IEEE Computer Society, 1977,
96-107.

Boehm, B. W. Software and its impact: A quantitative assessment.
Datamation, May 1973, 49-59.

Boehm, B. W. Some steps toward formal and automated aids to software
requirements analysis and design (Technical Report No. TRW-SS-
74-02). Redondo Beach, California: TRW, May 1974.

Boehm, B. W. The high cost of software. In E. Horowitz (Ed.), Prac-
tical strategies for developing large software systems, Reading,
Massachusetts: Addison-Wesley, 1975, 3-14.

Boehm, B. W., & Haile, A. C. Information processing/data automation
implications of Air Force command and control requirements in the
1980s (CCIP-85): Executive summary (Revised ed., Report No. SAMSO
TR-72-122). Los Angeles, California: USAF Space and Missile Sys-
tems Organization, February 1972.

Caine, S. H., & Gordon, E. K. POL: A tool for software design. In
P. Freeman, & A. I. Wasserman (Eds.), Tutorial on software design
techniques (2nd Ed.). Long Beach, California: IEEE Computer
Society, 1977, 168-173.

101

U
A

Chapin, N. New format for flowcharts. Software: Practice and Experi-
enc, 1974, 4, 341-357.

Cichelli, R. J., & Cichelli, M. J. Goal directed programming. SIGPLAN
Notices, 1977, 12(7), 51-59.

Dahl, 0. J. Dijkstra, E. W., & Hoare, C. A. R. Structured progranr.nn.
New York: Academic Press, 1972.

Davis, C. G., & Vick, C. R. The software development system. IEEE
Transactions on Software Engineering, 1977, SE-3, 69-84.

Duncker, K. On problem solving. Psychological Monographs, 1945, 58,
No. 5 (Whole No. 270).

Durding, B. M., Becker, C. A.- & Gould, J. 0. Data organization.
Human Factors, 1977, !9, 1-14.

Greeno, J. G. Natures of problem solving abilities. In W. K. Estes
(Ed.), Handbook of Learning and Cognitive Processes, Vol. 5.
Hillsdale, New Jersey: Erlbaum, 1978, 239-27n.

Greeno, J. G. Talk presented at Office of Naval Research Cognitive
Processes Contractors' Conference, Boulder, Colorado, May 1978.

Hamilton, M., & Zeldin, S. AXES syntax description (Technical Report
TR-4). Cambridge, Massachusetts: Higher Order Software, Inc.,
December 1976. (a)

Hamilton, M., & Zeldin, S. Integrated software develooment system/higher
order software conceptudl description (Technical Report ECOM-76-
0329-F). Fort Monmouth, New Jersey: U. S. Army Electronics Command,
1976. (b)

Hayes, J. R., & Simon, H. A. Understanding written problem instructions.
In L. W. Gregg (Ed.), Knowledge and Cognition. Potomac, Maryland:
Erlbaum, 1974.

Henderson, P., & Snowdon, R. An experiment in structured programming.
Bit, 1972, 12, 38-53.

Jackson, M. The Jackson design methodology. In P. Freeman & A. I. Wasser-
man (Eds.), Tutorial on software design techniques (2nd Ed.). Long
Beach, California: IEEE Computer Society, 1977, 219-234.

Jackson, M. A. Principles of program design. New York: Academic Press,
1975.

Jeffries, R., Polson, P. G., Razran, L. & Atwood, M. E. A process model
for missionaries-cannibals and other river-crossing problems.
Cognitive Psychology, 1977, 9, 412-440.

Kintsch, W. The representation of meaning in memory. Hillsdale, New
Jersey, Erlbaum, 1974.

Larkin, J. H. Problem solving in ohysics. Berkeley, California: Uni-
versity of California, Oepar*ment of Physics, July 1977.

102

rITI1

Ledgard, H. F. The case for structural programming. Bit, 1973, 13,
45-47.

Levin, S. L. Problem selection in software design (Technical Report
No. 93). Irvine, California: Department of Information and Com-
puter Science, University of California, November 1976.

Maier, N. R. F. Reasoning in humans. I. On direction. Journal of
Comparative Psychology, 1930, 10, 115-143.

Mills, H. D. Top-down programming in large systems. In R. Rustin
(Ed.), Debugging techniques in large systems. Englewood Cliffs,
New Jersey: Prentice Hall, 1971.

Myers, G. J. Reliable software through composite design. New York:
Petrocelli/Charter, 1975.

Newell, A. Artificial intelligence and the concept of mind. In R. C.
Shank & K. M. Colby (Eds.), Computer models of thought and language.
San Francisco: Freeman and Company, 1973, 1-60.

Norman, D. A. & Bobrow, D. G. On data-limited and resource-limited pro-
cesses. Cognitive Psychology, 1975, 7, 44-64.

Otey, 0. A., Ramsey, H. R., & Willoughby, J. K. Flight Test Oriented
Precompiler System (FLTOPS): Design specification (Technical Report
SAI-76-061-DEN). Englewood, Colorado: Science Applications, Inc.,
August 1978.

Paige, J. M. & Simon, H. A. Cognitive processes in the solving oF algebra
word problems. In B. Kleinmuntz (Ed.), Problem solving: Research,
method and theory. New York: Wiley, 1966.

Parnas, D. L. On the criteria to be used in-decomposing systems into.

modules. Communications of the ACM, 1972, 15, 1053-1058.

Peters, L. J., & Tripp. L. L. Comparing software design methodologies.
Datamation, November, 1977, 89-94.

Ramsey, H. R. PLANS: Human factors in the design pf a computer pro-
gramming language. In Proceedings of the Human Factors Society
18th annual meeting. Santa Monica, California: h!uman Factors
Society, 1974, 39-41.

Ramsey, H. R., Atwood, M. E., & Van Doren, J. R. A comparative study
-- of flowcharts and program design languages for the detailed pro-

cedural specification of computer programs (ARI Technical Report
No. TR-78-A20). Alexandria, Virginia: U. S. Army Research
Institute for the Behavioral and Social Sciences, 1978.

Ross, 0. T., & Shoman, K. E., Jr. Structured analysis for requirements
definition. IEEE Transactions on Software Engineering, 1977,
SE-3, 6-15.

103

Adl

Sacerdoti, E. D. A structure for plans and behavinr (Technical Note
109). Menlo Park, California: Stanford Research Institute,
August 1975.

Shneiderman, B. A review of design techniques for programs and data.
Software - Practice and Experience, 1976, 6, 555-567.

Simon, H. A. The sciences of the artificial. Cambridge, Massachusetts:
The MIT Press, 1969.

Simon, H. A. The structure of ill-structured problems. Artificial
Intelligence, 1973, 4, 181-201.

Simon, H. A. & Hayes, J. R. The understanding process: Problem iso-
morphs. Cognitive Psychology, 1976, 8, 165-190.

Stay, J. F. HIPO and integrated program design. In P. Freeman & A. I.
.Wasserman (Eds.), Tutorial on software design techniques (2nd Ed.).
Long Beach, California: IEEE Computer Society, 1977, 174-178.

Stevens, W. P., Myers, G. J., & Constantine, L. L. Structured design.
IBM Systems Journal, 1974, 13, 115-139.

Teichroew, D., & Sayani, H. Automation of system building. Datamation,
August 1971, 25-30.

Warnier, J. D. Logical construction of programs. Leiden, Netherlands:
Stenpert Kroese, 1974.

Wasserman, A..I. Case studies in software design. In P. Freeman &
A. I. Wasserman (Eds.), Tutorial on software design techniques
(2nd Ed.). Long Beach, California: IEEE Computer Society, 1977,
261-280.

Wertheimer, M. Productive thinking. New York: Harper-Row, 1945.
(Revised 1959).

Wirth, N. Program development by stepwise refinement. Communications
of the ACM, 1971, 14, 221-227.

Yourdon, E. Talk presented to Rocky Mountain Chapter, Association
for Computing Machinery, Denver, Colorado, April 1976, and subse-
quent personal communication.

Yuurdon, E. & Constantine, L. L. Structured design. New York: Yourdon,
Inc., 1975.

• ' 410

S~104

.- .. -'

APPENDIX A. POSSIBLE RESEARCH AREAS

EMPIRICAL COMPARISON(S) OF ALTERNATIVE DESIGN METHODOLOGIES

The conduct of a controlled experimental comparison of two or

more of the surveyed design methodologies is an obvious candidate

research activity. We believe that it is not a viable candidate,

however, for several reasons. There are numerous difficulties associ-

ated with the cost, selection of subjects, experimental control, and
definition of appropriate performance measures. Those difficulties
are not insurmountable, though, and the experiment might be feasible.

The real difficulty is that other approaches appear much more likely

to produce useful information. Considered in pairs, the surveyed
methodologies are either. extremely similar, in which case a comparison

hardly seems warranted, or they differ in many relevant respects. In

the latter case (e.g., a comparison of Structured Design with Jackson's

approach), it would probably be difficult to attribute an observed

performance difference to any particular property of the methodologies,

and it would certainly be difficult to generalize the result to other

design problems, levels of designer experience, etc. While such a

comparative study may eventually be relevant, it appears more cost-

effective, at present, to undertake a basic program of exploratory

studies. Such studies may help establish an understanding of the task

domain, individual properties of design techniques, effects of designer

experience, etc., which is needed to conduct this more explicit com-

parison in a useful way.

"PROPOSITIONAL" ANALYSIS OF SOFTWARE DESIGN INFORMATION

The manner in which the dpqigner initially perceives the design

task has obvious and significant effects on the design process. Previous

4.- 1research has shown that the manner in which text passages (Kintsch, 1974)

and computer programs (Atwood & Ramsey, 1978) are perceived, or under-

stood, can be represented in terms of a propositional hierarchy. Using the

" theoretical and empirical techniques developed in this research, the

nA--

¾ _ _ _ _ _ _

propositional structures constructed by a software designer to repre-

sent a design task would be investigated. Such research might result
in methods for identifying likely sources of errors, metrics of design

difficulty, measures of the expected difficulty of implementing a de-

sign, or notational schemes and guidelines to aid the designer in form-
ing an accurate understanding of a given design task. An exploratory

experiment along this line has been conducted as a part of the same
research program which produced the present report, and is described

by Atwood et al (1979).

TAXOMONY OF THE SOFTWARE DESIGN PROBLEM DOMAIN

On a intuitive level, there are different types, or classes, of

software design tasks. For example, designing a compiler appears to be

d'fferent than designing a business report generaLor. It may well be

the case that each type of software design task is best approached by
specific techniques, aids, etc. It seems even more likely that parti-

cular techniques may be precluded by certain problem properties. An
understanding of the properties of the problem domain which are most

S. relevant to designer problem-solving behavior would be quite helpful.

We are attempting to do this, by analysis, in connection with another

research effort, but empirical methods might be expected to yield more

valid and useful results. A possible first step in the empirical

development of such a taxomony of software design tasks might involve

developing and analyzing questionnaires to be completed by experienced

designers, and/or Delphi techniques. While the results of such studies
must always be viewed with a certain healthy skepticism, they can pro-

vide valuable insight and direction to analytical and experimental
inquiries.

TAXONOMY OF SOFTWARE DESIGN ERRORS

As suggested earlier in this report, the development of a useful

2 '. taxonomy of software design errors, from the viewpoint of the problem-

solving behavior involved, appears feasible and promising. This activity

A- 2

could proceed at two different levels. First, error analyses could

be performed on designs developed in connection with other explora-

tory studies suggested herein. This approach is quite inexpensive and
should yield useful insights into design errors associated with small

design problems in a limited domain. The second approach is on a much

larger scale, and would involve a similar analysis of archival design

error data which have been collected by DoD and perhaps other agencies.
The success of this effort will clearly be affected by the form and

content of the archival data base, and further preliminary analysis

should precede a firm commitment to undertake such a study.

ERROR-PREVENTIVE HEURISTICS

With greater insight into designer problem-solving behavior, and

with a taxonomy of design error types, it seems reasonable to expect

that useful error-preventive heuristics can be devised for at least some

of the important error types.

SOFTWARE DESIGN "CRITICS"

"Critics" are techniques that a designer, or a design-aiding sys-

tem, applies to ensure that modular decompositions are correct, in the

sense that submodules are independent and appropriate for the design task.

Based on a taxonomy of design errors, it may be possible to define an

appropriate set of critics to correspond to these errors. This would

allow the designer to construct modular decompositions only on the basis

of local information and rely on the critics to ensure that global con-

siderations are satisfied. Eliminating the need to explicitly consider

global information reduces the demands for cognitive resources imposed

on the desirner and should allow the designer to perform more effec-

tively and more efficiently.

A- 3

QUANTITATIVE MODELING OF SOFTWARE DESIGN PROBLEM-SOLVING BEHAVIOR

Developing quantitative models of the performance of software
designers on complex design tasks would be an extremely difficult
task. However, research on planning coula provide the necessary back-
ground for the eventual development of such models. In addition to
providing an explanation of design behavior, such models could also

be used as research tools to investigate the effects of design aids,

techniques, etc.

BEHAVIORAL ANALYSIS OF OMITTED SOFTWARE DESIGN METHODOLOGIES

This survey was intentionally restricted to a subset of the soft-

ware-design-related methodologies currently in use. The intent of the

survey was to include all current major methodologies incorporating
manual methods, and to include one example (ISDS/HOS) of the computer-

aided "macro-methodologies" as an aid to the development of a better
perspective on the problem. In the process of this survey, however,
-we have become convinced that: (1) an analysis in terms of human problem

solving can provide useful insights concerning individual methodologies,
and (2) the information derived from single methodologies can signifi-

cantly improve our overall perspective. It might be worthwhile, there-
fore, to extend the present survey to include the remaining "macro-
methodologies" (e.g., SREM, SOS, SADT, ISDOS). A preliminary analysis
should be dcne first, to quickly determine the degree to which these

methodologies differ F,'ico those a-ready surveyed. Only those which

seem likely to contribute significantly to our understanding should be

surveyed in detail.

ANALYSIS OF THE EFFECTS OF ISDS/HOS PROBLEM REPRESENTATION CONSTRAINTS

From the viewpoint of ISDS/HOS use, it wculd be desirable to have

a greater understanding of the effects of the problem representation

constraints resulting from the syntactically constrained decomposition
rules and the AXES specification language. Empirical observation of

A-4

(_ _ _

the use of the method for actual design would help clarify this issue.

Such a study should utilize moderately detailed protocol analyses,

and should ideally involve several types of software design problems.

ANALYSIS OF THE EFFECTS OF JACKSON-WARNIER PROBLEM

REPRESENTATION CONSTRAINTS

A similar problem exists with respect to the algorithmic method-

ologies. In particular, the constraints on data structure types may

interfere with designer performance. An empirical study, using multiple

problem types and protocol analysis, wouild do much to clarify the problem

types to which these approaches are applicable and the degree to which

the constraints interfere.

RELATION BETWEEN DESIGN SPECIFICATION AND DESIGN-

As suggested earlier, we assume that a designer, when reading a

design specification, constructs a propositional structure that repre-

sents the designer's perception of the software design task. This struc-

ture determines, in large part, the overall success of the design effort.

The appropriateness of this structure, in turn, is largely determined

by the manner in which the design requirements are specified. It may

be the case, for example, that what are generally classed as "design

errors" are actually due to errors or ambiguities in the requirements

specification. Although there are several approaches to this problem,

the most productive approaches wculd involve an analysis of the pro-

positional structures underlying the requirements specification and a

comparison of these structures with the internal representation con-

structed by the designer. A serious analytical study of this issue

might also be productive.

ANALYSIS OF THE EFFECTS OF DESIGN DOCUMENTATION MEDIUM ON

•* j DESIGN PERFORMANCE

In a previous study (Ramsey et al, 1978) we found that the

documentation medium (flowchart or program design language) used by "a

A- 5

~~ vaa

programmer for the design and specification of a computer program had

a significant effect on the nature and quality of the resulting design.
This may very well also be the case at the level of system design

(modular decomposition, etc.). The documentation media used here
include structure charts, HIPO charts, etc., as well as flowcharts and

PDLs. This issue seems tractible, and could be addressed by methods

similar to those employed in the previous study. Any such undertaking
should, however, be preceded by a serious behavioral analysis of the

documentation media and their role in the design process.

ANALYSIS OF THE RELATIONSHIP OF DESIGN TO PERFORMANCE IN

SUBSEQUENT SOFTWARE DEVELOPMENT ACTIVITIES

Although design obviously affects subsequent stages in the soft-

ware development cycle, these effects are not well understood. There are

two questions that seem most relevant here. First, is it possible to

classify design errors with respect to where they will be detected? For
e..ample, do some types of design errors become apparent during programming
while others remain undiscovered until coding or even testing? Second,

how is an error determined to be a design error as opposed to, for example,

an error in requirements specification, programming, etc.? The identi-
fication of the source of an error could aid in making an appropriate

correction, as opposed to merely a "patch" at some later time in the soft-
ware development cycle!. These issues are, to a degree, related to that

of developing a taxonomy of design errors, but are also subject to in-

lependent analytical study.

DEVELOPMENT OF IMPROVED DESIGN REVIEW TECHNIQUES

Various types of design review techniques are in common use. The

general intent of these techniques is that communicating the design to

others helps to ensure that the designer's perception of the problem and
his efforts to solve that problem are correct and complete. Some types

of review techniques, however, should be more effective than other. The

principal questions appear to be (1) how should the review be organized,
(2) how should the design be presented, and (3) when should the review

A- 6

take place? We feel that the last question is particularly important,

but all are candidates for research.

DEVELOPMENT OF ADDITIONAL AUTOMATED SOFTWARE DESIGN AIDS

Throughout this paper, we have mentioned various potential soft-

ware design aids. These aids are consistent with our current understand-

ing of the software design process. A more detailed analysis of the

problem-solving processes involved in software design can be expected to

lead to the identification of the cognitive processes involved and the

definition of aids that correspond to these processes. Such aids could,

potentially, be concerned with forming appropriate internal representa-

tions of design problems, determining how to decompose a module into

submodules, etc.

SYNTHESIS OF AN IMPROVED SYSTEM OF DESIGN TECHNIQUES

This is a very attractive long-range goal. The current survey

has provided several useful insights, and it seems likely that the other

research activities suggested here would provide sufficient information

to justify this attempt. It is important, though, to recognize that

this is not a short-term effort. While performance improvements may

very well result directly from the application of the findings of the

more basic research activities described here, the development of a

new, comprehensive design methodology should await the establishment

of a better fundamental understanding of software design behavior.

Nh

A - 7

